• Title/Summary/Keyword: slurry pressure

Search Result 247, Processing Time 0.271 seconds

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

Development of a Pad Conditioning Method for ILD CMP using a High Pressure Micro Jet System

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Doi, Toshiro
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • The goal of this study is to determine if High Pressure Micro Jet (HPMJ) conditioning can be used as a substitute for, or in conjunction with, conventional diamond pad conditioning. Five conditioning methods were studied during which 50 ILD wafers were polished successively in a 100-mm scaled polisher and removal rate (RR), coefficient of friction (COF), pad flattening ratio (PFR) and scanning electron microscopy (SEM) measurements were obtained. Results indicated that PFR increased rapidly, and COF and removal rate decreased significantly, when conditioning was not employed. With diamond conditioning, both removal rate and COF were stable from wafer to wafer, and low PFR values were observed. SEM images indicated that clean grooves could be achieved by HPMJ pad conditioning, suggesting that HPMJ may have the potential to reduce micro scratches and defects caused by slurry abrasive particle residues inside grooves. Regardless of different pad conditioning methods, a linear correlation was observed between temperature, COF and removal rate, while an inverse relationship was seen between COF and PFR.

The Effect of Pressure and Platen Speed on the Material Removal Rate of Sapphire Wafer in the CMP Process (CMP 공정에서 압력과 정반속도가 사파이어 웨이퍼 재료제거율에 미치는 영향)

  • Park, Sanghyun;An, Bumsang;Lee, Jongchan
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.67-71
    • /
    • 2016
  • This study investigates the characteristics of the sapphire wafer chemical mechanical polishing (CMP) process. The material removal rate is one of the most important factors since it has a significant impact on the production efficiency of a sapphire wafer. Some of the factors affecting the material removal rate include the pressure, platen speed and slurry. Among the factors affecting the CMP process, we analyzed the trends in the material removal rate and surface roughness, which are mechanical factors corresponding to both the pressure and platen speed, were analyzed. We also analyzed the increase in the material removal rate, which is proportional to the pressure and platen speed, using the Preston equation. In the experiment, after polishing a 4-inch sapphire wafer with increasing pressure and platen speed, we confirmed the material removal rate via thickness measurements. Further, surface roughness measurements of the sapphire wafer were performed using atomic force microscopy (AFM) equipment. Using the measurement results, we analyzed the trends in the surface roughness with the increase in material removal rate. In addition, the experimental results, confirmed that the material removal rate increases in proportion to the pressure and platen speed. However, the results showed no association between the material removal rate and surface roughness. The surface roughness after the CMP process showed a largely consistent trend. This study demonstrates the possibility to improve the production efficiency of sapphire wafer while maintaining stable quality via mechanical factors associated with the CMP process.

The Influences of Additives and Curing Temperature on the Expansion Pressure of Calcium Oxide Hydration (생석회의 팽창압 발현에 미치는 첨가제 및 양생온도의 영향)

  • Kim, Won-Ki;Soh, Jeong-Soeb;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.529-535
    • /
    • 2007
  • Calcium oxide has been used as a demolition agent in fracturing rocks and old concrete structures, etc. With the agent, demolition work can be done in safety without a noise, vibration and any other pollution, since high expansive pressure is obtained gradually by only mixing the agents with water and pouring the slurry into boreholes. But application of the non-explosive demolition agent is a time-consuming job, especially in winter. Essentially, this problem is related to the reaction rate of calcium oxide with water. This study examines the influence of additives such as cement and anhydrite on expansion pressure of calcium oxide at different curing temperatures. The expansion pressure of calcium oxide began to increase steadily with the rise of the curing temperature. When mixing calcium oxide alone with water, blown-out shot occurred. But as additives were added to calcium oxide, the reaction of calcium oxide delayed and the expansion pressure showed gradual increment. Especially, anhydrite showed a superior delaying effect than cement on the reaction of calcium oxide.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

A Study of Shield TBM Tunnelling-induced Volume Loss Estimation Considering Shield Machine Configurations and Driving Data (쉴드 TBM의 장비 형상 및 굴진 데이터를 고려한 체적손실 산정 연구)

  • Park, Hyunku;Chang, Seokbue;Lee, Seungbok
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.397-407
    • /
    • 2015
  • Estimation of shield TBM tunnelling-induced volume loss is of great importance for ground settlement control. This study proposed a simple method for evaluation of volume loss during TBM tunnlling, which is able to take into account of shield machine configurations and main driving data in calculation. The method was applied to analyze the tunnelling cases with earth pressure balanced and slurry pressure balanced shiled TBM, and mostly, reasonable agreements with monitoring results were found. Additional discussions were made for some disagreements.

A Study on the Ground Improvement by Compaction Grouting System (C.G.S에 의한 기초지반보강효과에 관한 연구)

  • 천병식;여유현;최현석;오일석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.1-13
    • /
    • 1999
  • The use of Compaction Grouting evolved in the 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major uses of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other application include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. The technique replaced slurry injection, or 'pressure grouting', as the preferred method of densification grouting. There are several reasons for the increased use of Compaction Grouting which can be summarized in one word: CONTROL. The low slump grout and injection processes are usually designed to keep the grout in a homogeneous mass at the point of injection, while acceptable in some limited applications, tends to quickly get out of control. Hydraulic soil fracturing can cause extensive grout travel, often well beyond the desired treatment zone. So, on the basis of the two case history constructed in recent year, a study has been peformed to analyze the basic mechanism of the Compaction Grouting and verify the effectiveness of the ground improvement using some test methods.

  • PDF

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition (최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

Characterization of SiC-SiC Whisker Matrix Retaining Electrolyte in Phosphoric Acid Fuel Cell (인산형 연료전지용 SiC-SiC Whisker 전해질 매트릭스의 특성)

  • 윤기현;이현임;이근행;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.587-592
    • /
    • 1992
  • Sheets of SiC-SiC whisker maxed matrix were prepared from the mixed slurry of SiC whisker and SiC matrix by the rolling method. With the increase of SiC whisker, the pore size, the porosity and the phosphoric acid absorbency of the matrix were increased, while the bubble pressure was decreased. The activation energy for the transfer of H+ ion was decreased with the increase of mixing ratio of SiC whisker to the SiC matrix from the measurement of hydrogen ion conductivity. The activation energy was evaluated as 0.25 eV when the mixing ratio of SiC whisker to the SiC matrix was 1 : 2 and the activation energy was 0.16 eV for the 2 : 1 matrix. It means that SiC whisker matrix contributes to attain a better microstructure for the diffusion of hydrogen ion. From the measurement of single cell performance of matrix with various mixing ratio, it is concluded that if SiC-SiC whisker maxed matrix has a sufficient bubble pressure to prevent the crossover of H2 gas, the current density of a fuel cell is increased with the increase of acid absorbency of the matrix. Current density was improved from 140 mA/$\textrm{cm}^2$ for 0.25 mm thickness of matrix to 170 mA/$\textrm{cm}^2$ for the 0.20 mm one at 700 mV.

  • PDF