• Title/Summary/Keyword: slurry materials

Search Result 506, Processing Time 0.022 seconds

A Study on the Physical Properties of Mineral Hydrate Insulation Material Mixed with Basalt Fiber

  • Park, Jae-Wan;Chu, Yong-Sik;Seo, Sung-Kwan;Jeong, Jae-Hyen
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Mineral hydrate is a new insulation material that compensates for the defects of existing materials. Mineral hydrate is made of inorganic ingredients; therefore, it is nonflammable. The porous structure of mineral hydrate makes the material lightweight and insulating. Mineral hydrate insulation and similar products have been studied and manufactured in Korea and abroad. However, these insulation materials need to improve in terms of strength. In this study, basalt fiber was used to enhance the strength. In order to observe the property changes, compressive strength, heat conductivity, and specific gravity were measured and XRD pattern analysis was performed. These tests confirmed that basalt fiber was effective at improving the strength and lowering the heat conductivity of mineral hydrate insulation.

Machining Properties to Nano-Level Mirror Surface Finishing for Fine Grained WC-Co 18% Alloy using Magnetic Polishing Slurry (자성연마슬러리를 이용한 초미립 초경합금(WC-Co 18%)의 나노급 경면가공 특성)

  • Kwak, Tae-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • This study has been focused on an effective surface finishing method combining ELID (ELectrolytic In-process Dressing) and MAP (Magnetic Assisted Polishing) for the nano-precision mirror grinding of glass-lens molding mould. ELID grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP has been used as polishing method due to its high polishing efficiency and superior surface quality. It also presents some techniques for achieving the nanometer roughness of the hard material such as WC-Co, which are extensively used in precision tooling material.

Effects of Abrasive Size and Surfactant Concentration on the Non-Prestonian behavior of Nano-Ceria Slurry for STI CMP (STI CMP용 나노 세리아 슬러리의 Non-Prestonian 거동에서 연마 입자의 크기와 계면활성제의 농도가 미치는 영향)

  • ;Takeo Katoh
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.64-64
    • /
    • 2003
  • 고집적화된 시스템 LSI 반도체 소자 제조 공정에서 소자의 고속화 및 고성능화에 따른 배선층수의 증가와 배선 패턴 미세화에 대한 요구가 갈수록 높아져, 광역평탄화가 가능한 STI CMP(Shallow Trench Isolation Chemical-Mechanical-Polishing)공정의 중요성이 더해가고 있다. 이러한 STI CMP 공정에서 세리아 슬러리에 첨가되는 계면활성제의 농도에 따라 산화막과 질화막 사이의 연마 선택비를 제어하는 것이 필수적 과제로 등장하고 있다. 일반적인 CMP 공정에서 압력 증가에 따른 연마 제거량이 Prestonian 거동을 나타내는 반면, 연마 입자의 크기를 변화시켜 계면활성제의 농도를 달리 하였을 경우, 압력 변화에 따라 Non-Prestonian 거동이 나타나는 것을 고찰할 수 있었다. 따라서 본 연구에서는 세리아 슬러리 내에 첨가되는 계면활성 제의 농도와 연마입자의 크기를 달리한 후, 압력을 변화시킴으로 나타나는 non-Prestonian 거동에 미치는 영향에 대하여 연구하였다.

  • PDF

Dependency of Planarization Efficiency on Crystal Characteristic of Abrasives in Nano Ceria Slurry for Shallow Trench Isolation Chemical Mechanical Polishing (STI CMP용 나노 세리아 슬러리에서 연마입자의 결정특성에 따른 평탄화 효율의 의존성)

  • Kang, Hyun-Goo;Takeo Katoh;Kim, Sung-Jun;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.65-65
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is one of the most important processes in recent ULSI (Ultra Large Scale Integrated Circuit) manufacturing technology. Recently, ceria slurries with surfactant have recently been used in STI-CMP,[1] became they have high oxide-to-nitride removal selectivity and widen the processing margin The role of the abrasives, however, on the effect of planarization on STI-CMP is not yet clear. In this study, we investigated how the crystal characteristic affects the planarization efficiency of wafer surface with controlling crystallite size and poly crystalline abrasive size independently.

  • PDF

Characteristics of HTS tube fabricated by centrifugal forming process (원심성형법으로 제조한 고온초전도 튜브의 특성 분석)

  • Jang, Gun-Eik;Park, Yong-Min
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.211-215
    • /
    • 2000
  • Bi-2212 HTS tube was fabricated by CFP(Centrifugal Forming Process). Slury was prepared in the mixing ratio of 8:2 between powder and binder and ball-milled for 24 hrs. Slurry was initially charged into the rotating mold with 300${\sim}$450 rpm and heated at the temperature ranges of 840${\sim}$860$^{\circ}$C for partial melting to finally obtain a uniformly textured tube shape. It was observed the plate-like grains with more than 20 ${\mu}$m were well oriented along the rotating axis and the measured T$_c$ was around 67K. In this paper we will discuss and analyze the tube characteristics depending on many different processing parameters such as, powder composition, binder mixing ratio between powder and binder, motor speed, heating temperature and etc.

  • PDF

Fabrication of Porous RBSN Ceramics with Aligned Channels by an Ice-Templating Method

  • Kim, Dong-Seok;Go, Jae-Ung;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.97.1-97.1
    • /
    • 2012
  • Porous ceramics are widely used for applications such as catalysis supports, gas distributors and filters such as DPF. For these purpose, it is important to have proper porosity controlling pore structure while maintaining mechanical and thermal properties. In this work, we have prepared the porous ceramic structures made of reaction bonded silicon nitride with hierarchical pore structures. Uni-directionally aligned pore channels, which are mostly filled with ${\beta}$-Si3N4 whiskers, were achieved by an ice-templating method. The structures of the pore channels and the walls are controllable by the processing conditions, such as solid concentration, freezing rate of the slurry, and additives. We have investigated and characterized the influences of the conditions on the microstructures and the properties, such as porosity, pore size distribution, lamellar thickness, wavelength, and orientations. The compressive strength test and flow test was performed to determine the structural integrity and air permeability.

  • PDF

Adhesion of Alumina Slurry Particles on Wafer Surfaces during Cu CMP (Cu CMP 공정중 Wafer 표면의 알루미나 연마입자의 점착)

  • Hong, Yi-Koan;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1292-1295
    • /
    • 2004
  • 본 연구는 Cu CMP공정 중 알루미나 연마입자의 wafer 표면에서의 점착과 오염을 AFM (Atomic Force Microscopy)을 사용하여 슬러리내에서 점착력 측정과 실제 연마 후 wafer 표면의 오염을 실험적으로 비교 평가하였다. 연마입자의 adhesionn force 측정에 있어서도 역시 wafer들의 zetapotential 결과와 잘 일치하였으며, 모든 wafer 종류에 관계없이, 산성 영역에서 염기성영역의 슬러리가 적용됨에 따라 adhesion force가 작아짐을 확인할 수 있었다. 특히 FSG wafer의 zetapotential 결과는 비록 산성 분위기에서는 양성 전하값을 나타내었으나, 염기성 분위기의 pH에서는 급격하게 음성 전하값을 나타내었고, 이는 adhesionn force결과와 FESEM 결과와 잘 일치하였다.

  • PDF

Flow and Strength Characteristics of the Lightweight Foamed CLSM(Controlled Low-Strength Materials) with Coal Ash (석탄회를 활용한 경량기포유동화재의 플로우 및 강도 특성)

  • Lee, Seungjun;Lee, Jonghwi;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.73-82
    • /
    • 2011
  • Coal ash of industial by-products was not recycled about 30% in total emissions. Moreover, it caused environmental pollution as well as wasted unnecessary expenses and time. Currently, fly ash(FA) is recycled as construction material however ponded ash(PA) is mostly buried. Lightweight foamed Controlled Low-Strength Materials(CLSM) evaluated in this study reduces unit weight by mixing foam in the traditional Controlled Low-Strength Material and has lightweight and flowability to be available for backfill materials in construction. Flow test, unconfined compressive strength test, and foamed-slurry unit weight test were performed in this study and the applicability of lightweight foamed CLSM for construction materials was evaluated. The results indicate that the mixture ratio(PA:FA) ranging from 70:30 to 50:50, cement of 7%, foam of 2~3%, and water content of 26.5~29.5% were required to satisfy the following standards such as flow value(i.e., 20cm), unconfined compressive strength(i.e., 0.8~1.2MPa), and foamed-slurry unit weight(i.e., $12{\sim}15kN/m^3$).

Bend Resistance of Polymer Cement Slurry Coated Reinforcing bars (폴리머 시멘트 슬러리 도장철근의 내굴곡성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1017-1022
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by adhesion strength of bar and coating materials and transformation of coating materials to the bar. Expecially, tearing state or a limited microscopic cracks are predicted on the inside and outside of bending angle because of adhesion strength and elongation is very different with types of polymer materials using bar coating, and these parts are accelerated corrosion as penetration of bar corrosion effects factor. In this study, cement modified polymer are prepared four types and differ from polymer cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 280days, and then tested bend resistance as bending angle $90^{\circ}$, $135^{\circ}$ and $180^{\circ}$ for observe the microscopic demage effect according as bar bend. From the test results, when is used cement modified polymer as coating materials of bar, St/BA is showed excellent bend resistance than a polyacrylic emulsion and SBR because of softness. But it is to need attention because as coating parts are pressed down and tearing, also experimental study is proceeded to corrosion potential on the inside and outside of coated reinforcing bar.

  • PDF

Mechanical Behaviour of Non-Oxide Boride Type Ceramics Formed on The AISI 1040 Plain Carbon Steel

  • Sen, Saduman;Usta, Metin;Bindal, Cuma;UciSik, A.Hikmet
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 2000
  • A series experiments were performed to evaluate mechanical behavior of non-oxide boride type ceramics formed on the AISI 1040 plain carbon steel. Boronizing was performed in a slurry salt bath consisting of borax, boric acid, and ferro-silicon at $950^{\circ}C$ for 2-6h. The AISI 1040 steel used as substrate material was containing 0.4%C, 0.13%Si, 0.65%Mn, 0.02%P, 0.014%S. The presence of non-oxide boride type ceramics $Fe_2B $ and FeB formed on the surface of steel was confirmed by metallographic technique and X-ray diffraction (XRD) analysis. The hardness of borides measured via Vickers indenter with a load of 2N reached a microhardness of up to 1800 DPN. The hardness of unborided steel was 185 DPN. The fracture toughness of borides measured by means of Vickers indenter with a load of 10N was about 2.30 MPa.$m^{1/2}$. The thickness of boride layers ranged from 72$\mu\textrm{m}$ to 145$\mu\textrm{m}$. Boride layers have a columnar morphology.

  • PDF