• Title/Summary/Keyword: slurry coating

Search Result 126, Processing Time 0.025 seconds

The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향)

  • Choi, Jin Ho;Jeong, Eun-Mi;Park, Dahee;Yang, Sangsun;Hahn, Yoo-Dong;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Research on Performance of LSM Coating on Interconnect Materials for SOFCs

  • Zhai, Huijuan;Guan, Wanbing;Li, Zhi;Xu, Cheng;Wang, Wei Guo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.777-781
    • /
    • 2008
  • Experiments were conducted using SUS430 and Crofer 22 APU steels coated by LSM using plasma spray and slurry spray methods, respectively. High-temperature conductivity and oxidation resistance were investigated. For comparison, SUS430 and Crofer 22 APU without LSM coating were also investigated and coefficient of thermal expansion (CTE) was measured. The results show that the materials without LSM coating exhibit almost the same CTE as YSZ electrolyte in a range of temperatures of $550{\sim}850^{\circ}C$. When coated with LSM, the oxidation rate of the steels decreases by $30{\sim}40%$ using slurry spray and by $10{\sim}30%$ using plasma spray whereas the steels using plasma spray have a better high-temperature conductivity than the steels using slurry spray. It is thus concluded that the LSM coating has a limited effect on increasing high-temperature conductivity while it can effectively reduce the oxidation of the steels.

Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry (Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향)

  • Song M.S.;Gee W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

Properties of Adhesion Tension of Polymer Cement Slurry for Coated Reinforcing Bar (철근 도장용 폴리머 시멘트 슬러리의 부착 특성)

  • 김현기;이철웅;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.343-348
    • /
    • 2000
  • The purpose of this study is to clarify properties adhesive strength of polymer-cement slurry for coated reinforcing bars. The epoxy coating material is superior to performance of anti-corrosion but lately age adhesive strength between concrete raise to structural problems. However, polymer dispersion with excellent performance of elasticity and adhesion can solve this problems. From the test results. adhesion of steel with polymer cement slurry using St/BA emulsion is show excellent without concerned coating thickness, and polymer cement slurry using St/BA emulsion is show adhesion in tension 1.2~2.2MPa at polymer cement ratio 50% of more.

  • PDF

Indium Tin Oxide (ITO) Coatings Fabricated using Nanoparticle Slurry and Sol

  • Cheong, Deock-Soo;Yun, Dong-Hun;Kim, Dong-Hwan;Han, Kyoung-R.
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.516-519
    • /
    • 2011
  • Indium tin oxide (ITO) coatings were made using an ITO slurry and an ITO sol. This was achieved by dispersing nanosized ITO powder in a mixed solvent without any dispersant and developing an adhesive ITO sol from indium acetate and tin tetrachloride in a mixture of DMF and n-butanol. Coating was carried out in one step by spin coating an ITO slurry, which was then followed by an ITO sol over it. Here, the sol penetrates into the nano ITO particle layers to make them adhere to each other as well as to a glass substrate. This is then followed by sintering at 500$^{\circ}C$ for 1 h to produce a uniform film consisting of ITO particles of about 50 nm and 10 nm. ITO films were obtained with sheet resistances from 450 to 1500 ohm/${\Box}$ by varying spin speed and concentration. Transmittance is higher than 90% at 550 nm.

Processing and Microstructure of Alumina Coated with $Al_2O_3$/SiC Nanocomposite

  • Ha, Jung-Soo;Kim, C-S.;D-S. Cheong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.19-22
    • /
    • 1997
  • The surface modificaion of alumina by $Al_2$O$_3$/SiC nanocomposite coating was studied in terms of processing and microstructure. A powder slurry of 5 vol% SiC composition was dipcoated onto presintered alumina bodies and pressurelessly sintered at 1$700^{\circ}C$ for 2 h in $N_2$. The used of organic binder and plasticizer in the slurry preparation, and the control of the density of presintered alumina body were found to be necessary to avoid cracking and warping during processing. The nanocomposite coating well bonded to the alumina body with thickness about 110 ${\mu}{\textrm}{m}$. The average grain size of coating (2 ${\mu}{\textrm}{m}$) was much finer than that of alumina body (13 ${\mu}{\textrm}{m}$). Fracture surface observations revealed mostly transgranular fracture for the coating, whereas intergranular fracture for the alumina body. Some pores (about 6%) were observed in the coating layer, although the alumina body showed fully dense microstructure.

  • PDF

Lamination of Dielectric Layers by High Pressure Spray Coating for LTCC (고압 스프레이 코팅법에 의한 저온동시소성세라믹(LTCC) 유전체 층의 적층방법)

  • Lee, Jee-Hee;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.33-38
    • /
    • 2006
  • Aerosol slurry composed of dielectric materials, distilled water, and deflocculants was sprayed on the substrates, through a high-pressure spray gun as an aerosol. The coated layers were cofired together with $Al_{2}O_{3}$ substrates and green sheets on which the inner connectors were printed. Although the coating rate of coated layers strongly depended on slurry viscosity, spray shape, and the pressure of the spray gun, the coated density was not changed. Buried conductors were maintained as printed by high pressure spray coating method, because the pressing process was not used. At the optimum condition of air controller step 3-4 and slurry viscosity c.p 2000-4000, dense and uniform layers could be achieved. Comparing with conventional lamination process using green sheets, spray coating method enabled thin dielectric layers of $20{\sim}50{\mu}m$.

  • PDF

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

A Study on the Bond Strength of Coated Rebar by Polymer Cement Slurry Made of EVA and Ultra High-Early Strength Cement (EVA와 초조강시멘트를 사용한 폴리머 시멘트 슬러리 도장철근의 부착강도에 관한 연구)

  • Hyung, Won-gil;Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.633-640
    • /
    • 2015
  • Polymer cement slurry (PCS) is made from organic polymer dispersion and cement has good adhesion to steel, waterproofness and acid resistance due to being of polymer films formed in cement slurry. The purpose of this study is to evaluate the bond strength of coated rebar by polymer cement slurry made of EVA and ultra high-early strength cement. The test pieces are prepared with EVA polymer dispersion and ultra high-early strength cement having four types of polymer-cement ratios, four types of coating thicknesses and four curing ages, and tested for the bond strength test. From the test results, in general, bond strength of PCS-coated rebar is better than that of uncoated rebar and epoxy-coated rebar. It is also high bond strength at curing ages of 7-day, and coating thicknesses of $75{\mu}m$ and $100{\mu}m$. The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and EVA at polymer-cement ratio of 80%, and coating thickness of $100{\mu}m$ is about 1.32 and 1.38 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is apparent that the curing age, coating thickness, type of polymer and cement are very important factors to improve the bond strength of PCS-coated rebar to cement concrete. We can have basic information that PCS-coated rebar with polymer-cement ratio of 80% or 100% and coating thickness of $100{\mu}m$ at curing age of 1-day can replace epoxy-coated rebar.