• Title/Summary/Keyword: sludge solids

Search Result 179, Processing Time 0.026 seconds

Uptake of Wastewater Organic Matter to Activated Sludge

  • Nam, Se-Yong;Kim, In-Bae
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.493-496
    • /
    • 2007
  • The influences of contact time and ratio of food to microorganism (F/M) on uptake of wastewater organic matter in a short contact process were investigated using three activated sludge batch reactors fed with synthetic wastewater, sewage and livestock wastewater. About 64% of influent soluble chemical oxygen demand (SCOD) in the synthetic wastewater and 61% of SCOD in the sewage and 43% of SCOD in the diluted livestock wastewater were adsorbed into the activated sludge within 30 min. The specific mass of organic matter uptaken in the synthetic wastewater was 55 mg SCOD/g mixed liquor suspended solids (MLSS). In the same manner, 20 and 14 mg SCOD/g MLSS were calculated as the values in the sewage and livestock wastewater, respectively.

The study of chemical treatment of pulp mill bleaching waste liquor using lime (석회를 이용한 펄프공장 폐액의 화학적 처리에 관한 연구)

  • 정병곤;이헌모;윤종호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.23-28
    • /
    • 1997
  • This study was conducted to know the possibility of reducing lime dosage by recycling sludge from bleaching wastewater lime coagulation settlement treatment at pulp mill process. In case of bleaching wastewater at the pulp mill process, when the lime dosage was increased, the removal efficiency of TSS(Total Suspended Solids) was increased, proportionally, but the organic removal efficiency was increased very slowly. It was concluded that sludge recycling at the lime coagulation settlement process was effective method to reduce the requirement of lime dosage. At the lime coagulation settlement process with sludge recycling, when the recycling number was increased, the organic removal efficiency was decreased, sharply. It was evaluated that the pH could be the basic standard for lime supplement by sludge recycling.

  • PDF

Treatment of milking parlor wastewater containing tetracycline by magnetic activated sludge and contact oxidation process

  • Gaowa, Gaowa;Sakai, Yasuzo;Xie, Xiaonan;Saha, Mihir Lal;Ihara, Ikko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.32-36
    • /
    • 2021
  • Milking parlor wastewater contains not only high concentrations of organic compounds, but often animal antibiotics. To discharge the antibiotics to public water area cause problem of antibiotics resistant bacteria. Magnetic separation was applied into improvement of milking parlor wastewater treatment process. A new process, composed of a magnetic activated sludge (MAS) process and a contact oxidation (CO) process, was proposed in this study. This process was evaluated by the simulated milking parlor wastewater (4500 mg/L CODCr and 10 mg/L tetracycline) using a bench scale experimental setup. As a result, the process was able to removed 97% CODCr as well as 94% tetracycline. The MLVSS (mixed liquor volatile suspended solids) concentration of MAS was maintained at 12000 mg/L without excess sludge drawing. This process was considered to be useful as treatment process for milking parlor wastewater in which waste-milk including antibiotics is often discharged.

STUDIES ON THE MATHEMATICAL KINETICS FOR THE REMOVABLE MOVING SCREEN MEDIA-ACTIVATED SLUDGE PROCESS (회전형 반고정망 활성슬럿지 공법의 수학적 해석에 관한 연구 2. 슬럿지 생산량 및 축적과정과 유출수의 수질에 대하여)

  • HAN Ung-Jun;HAN Yeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.175-179
    • /
    • 1979
  • One of the major problems in tile activated sludge system has been difficulty in separating the microbial solids from the treated effluent and in returning them to the aeration tank. Another problem has been the digestion of the excess activated sludge. In constrast, it has not been difficult to separate the microbial solids from the treated effluent from the biological fixed-film systems(RBC process, Trickling Filter, FAST process). These systems have also featured less sludge production. Recently, it was proposed to experiment with the RESMAS process in order to eliminate the settling tank and sludge concentration facilities and to reduce the quantity of excess sludge for final disposal. The effluent quality could be predicted by .the concept of the maximum accumulation capacity. However, the hydraulic characteristics of the screen media in the RESMAS reactor were not dynamic. The object of the present study is to evalute the sludge accumulation rate and effluent quality prediction in the REMSMAS process designed in the dynamic hydraulic structure. This process can eliminate the final sedimentation tank and sludge concentration tank needed in the RBC, CMAS, Trickling Filter and FAST processes. Also, the effluent quality is desirable to compare with other processes. It appeared that the value of the sludge holding capacity was higher than those of the RESMAS and FAST processes, and the periods of the critical operating time were proportional to the substrate hydraulic loadings.

  • PDF

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor (연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거)

  • Kim, Sung Hong;Lee, Yoon Heui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.669-675
    • /
    • 2006
  • Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.

A Study on the Pyrolysis Processing for sludge disposal in sewage treatment plant (하수처리장내 슬러지 처리를 위한 열분해공정에 관한 연구)

  • Ha, Sang-An;Kim, Hyeoog-Seok;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.65-74
    • /
    • 2002
  • This Study was investigated operating condition of pyrolysis processing for sludge disposal in sewage treatment plant. Important parameters studied include running time of pyrolysis, run time of dry and pyrolysis processing, water content of sewage sludge, solids amount of sewage sludge(TS%), condition of pyrolysis temperature. Most degradation reaction of sewage sludge are first order, it assumed first order and elucidated the kinetics. This was the basis of characteristics analysis of sludge degradation mechanism. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas product components was observed. Main components of gas and carbon product are a little difference with pyrolysis temperature, but it consist of $CH_4$, $C_2H_4$, $C_3H_8$, $C_4H_{10}$, toluene, $C_6H_6$, $SO_2$, CO etc. The gas of $C_1-C_4$ yield increased along with degradation temperature of $670^{\circ}C$ and oil yield decreased of $C_6H_6$ and $C_6H_5OH$ with temperature of $600^{\circ}C$. Particularly, low value added char yield 134kg/t at $670^{\circ}C$, but increased to 194kg/t at pyrolysis temperature of $600^{\circ}C$. In the result of elementary analysis on it, it is mainly composed of carbon. From this fact, in pyrolysis of sludge, it comfirmed that carbonization reaction occur at high temperature well.

  • PDF

Role of Crossflow Module Media in Gas-liquid-solid Separation and Biomass Retention in Hybrid Anaerobic Filter (교차흐름식 모듈 충전 hybrid 혐기성여상의 기·액·고 분리능 및 슬러지보유능)

  • Chang, Duk;Chae, Hee-Wang;Bae, Hyung-Suk;Chung, In;Han, Sang-Bae;Hur, Joon-Moo;Hong, Ki-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.769-778
    • /
    • 2009
  • Performances and internal behaviors of the upflow hybrid anaerobic filters treating a dairy wastewater were analyzed to identify the functions and roles of the modular crossflow media and sludge bed layer and to discover their interrelationship in the filter. The media could perform independent biological and physical separation role without buildup of sludge bed, while the role of sludge bed was dependent on the function of the media. The filter packed with the crossflow media did not necessarily require the formation of sludge bed when treating a dairy wastewater. Biological contribution of the media was controlled by that of biologically active sludge bed complementing mutually each other. The gas-liquid-solid separation capability of the media was indispensible to ensure the active biological role of sludge bed, since sludge bed buildup without the media had no independently effective biological function. It was believed that the filter in itself could also function as a selector for physical gas-liquid-solid separation resulting in selectively concentrating particles with superior settleability in sludge bed. The sludge bed in the filter played a key role in the physical solids capture from influent as well as biological organics removal.

Advanced Wastewater Treatment using Sludge Solubilization by the Cavitation and PGA addition (Cavitation에 의한 슬러지 가용화와 PGA를 이용한 하수고도처리에 관한 연구)

  • KIM, Dongha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.449-454
    • /
    • 2008
  • Some pretreatment methods have been proposed to enhance the biodegradability and to shorten the hydrolysis reaction time. By means of efficient pretreatment the suspended solids (SS) can be made of better accessible for the anaerobic bacteria. There are several ways how this can be accomplished, which include biological, mechanical, thermal, and chemical methods. For the sludge solubilization using the cavitation phenomenon, we have tried to develop a pretreatment process consisted of a reactor and pumps. The objectives of this study were to develop a advanced wastewater treatment consisted of IABR and the cavitation with PGA. The most effective removal for organic matter and nutrients were occured when both cavitation pretreatment and ${\gamma}$-PGA were applied at the IABR process. Only small portion of ${\gamma}$-PGA at a rate of 1.38mg/L, was enough to improve sedimentation ability, SS removal efficiencies, and sludge volume reduction. After the sludge solubilization by the cavitation, SCOD increased to 193% and SS decreased to 36%. The removal ratio of BOD was 94.5%, T-N removal ratio was 85.5% and T-P removal ratio was 84.9%. The combination process of the IABR with the cavitation and PGA addition seems to be very effective alternative wastewater treatment process.

Recovery of Aluminium Coagulants from Water Treatment Plant Sludges (정수 슬러지로부터 알루미늄 응집제의 회수에 관한 연구)

  • Lee, Jae-Bok;Hwang, Jeong-Wuk;Kim, Jin-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.30-40
    • /
    • 1998
  • Increasing water consumption produced sludge problems of the water treatment plants. The objective of this study is to investigate aluminium coagulants recovery n acidic and alkaline conditions. Water treatment plant sludge produced in Pusan Metropolitan City were tested for the aluminium extraction process. Experiment samples were obtained in summer from water treatment plants of Deoksan and Myongjang. Aluminium coagulants used in these plants during the test period were polyaluminium chloride(PAC), polyaluminium sulfate organic(PSO), polyaluminium sulfate silicate(PASS). Aluminium contents of water treatment sludge were in the range of 7.2~10.9% of the total solids. The recovery percentages for aluminium and iron by acidic extraction method was evaluated to 88% and 42% respectively. Extracted mass variation for other materials such as iron, manganese, total organic carbon was observed during the extraction operation. Alkaline extraction produced more than two times amount of total organic carbon than that in the acidic extraction process.

  • PDF

Optimum Operation of Thermophilic Aerobic Digestion Process for Waste Activated Sludge Minimization

  • Kim, Young-Kee;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.683-686
    • /
    • 2002
  • To achieve optimum operation of a thermophilic aerobic digestion (TAD) process for waste activated sludge (WAS), TAD experiments using Bacillus stearothermophilus (ATCC 31197) were carried out to investigate the optimum concentration of dissolved oxygen (DO). TAD reactors were operated at DO concentrations of 0, 1, 2, 3, 4, and 5 ppm, and the results showed that the WAS could be successfully degraded by a TAD system operated with a DO concentration of 1 ppm and above. When the TAD system with an optimum additive (2 mM Ca ion), selected from a previous study, and 1 ppm DO concentration were combined with a thermal pretreatment ($121^{\circ}C$, 10 min), the results exhibited upgraded total suspended solids and an enhanced protein degradation.