• Title/Summary/Keyword: sludge digestion

Search Result 287, Processing Time 0.024 seconds

A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment

  • Akhbari, Azam;Kutty, Prashad Kumaran;Chuen, Onn Chiu;Ibrahim, Shaliza
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.212-221
    • /
    • 2020
  • This work discusses the palm oil mill processing carried out at Jugra Palm Oil Mill Sdn Bhd, situated at Selangor, Malaysia with the capacity of 45-t fresh fruit bunch (FFB)/h. Typically, oil palm residues and palm oil mill effluent (POME) from FFB are generated while processing. Prior to discharge, POME should be treated to remove pollutants in the effluent. As such, the performances of anaerobic and aerobic ponds were assessed in this study to determine temperature, pH, biological oxygen demand (BOD), sludge volume index (SVI), and dissolved oxygen (DO). From the experiments, mesophilic temperature due to better process stability was applied in anaerobic ponds. The pH results displayed a fluctuating trend between lower control limit and upper control limit, and, the pH value increased from one pond to another. The final discharge BOD and SVI appeared to be lower than 100 mg/L and 10 mL/L indicating low degree of pollution and good settling ability for biomass/solid. DO was close to normal, mostly below 2 mg/L. The experimental outcomes revealed the effective treatability of POME in adherence to the standard regulation, which is the priority for environmental sustainability within this industry domain.

Decrease of the Hydrogen Sulfide($H_2S$) in the Produced Biogas by the Anaerobic Digestion (혐기성소화 시 발생되는 $H_2S$ 감소에 관한 연구)

  • Hong, Jong-Soon;Kim, Jae-Woo
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.80-89
    • /
    • 2009
  • In the organic waste, food waste is the most difficult controls. In the study, food waste was treatmented to removal only the dockage. To decrease the hydrogen sulfide($H_2S$) in the produced biogas, iron chloride put in the anaerobic digester. Respectively treatment quantity of the food waste, content of the methane($CH_4S$) gas in the biogas, produced gases quantity, put in the quantity of the Iron chloride, pH, TS, Alkalinity, VFA, Ammonia. The results obtained from the experiment are as follows: 1. The produced biogases quantity/the treatment quantity of the food waste was $83.82{\sim}129.41m^3/ton$. 2. The content of the hydrogen sulfide($H_2S$) in the produced biogas is below of the 500ppm. The iron chloride put in the anaerobic digester. 200~300kg of the iron chloride put in the anaerobic digester at the steady-state. 400~850kg of the iron chloride put in the anaerobic digester at the unsteady-state. 3. Factor of the operator was the pH: 7.7~8.4, content of mathane: 55~65%. 4. TS(total solid) of the digestor sludge was 17~20%, Alkalinity was 38,500~41,750ppm, VFA(Volatile Fatty Acids) was 2,800~2,420ppm, Ammonia was 4,300~3,650ppm.

A Study on Current Energy Consumption and Recycling at Public Wastewater Treatment Plants in Korea (국내 공공하수도 시설의 에너지 사용 및 자원화실태 조사연구)

  • Park, Seungho;Kim, Byongjoo;Bae, Jae-Ho;Lee, Cheol Mo;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.539-549
    • /
    • 2007
  • To establish effective and prompt measures for energy conservation in public wastewater treatment plants in Korea, energy consumption rates in 233 utilities in 9 provinces and 7 metropolitan cities are investigated and compared to the rest of the world. Mean load factor for wastewater treatment utilities is 74.9% and those for influent pumps and aeration blowers are 56.2% and 61.0%, respectively. Mean electrical energy usages as the key performance indicators are $0.243kWh/m^3$ for overall sewage treatments and 2.07 kWh per unit kg BOD removal. Digester gas as one of major byproducts in the process amounts to $382,000m^3/day$ nationwide. While major part of the digester gas is used for sludge heating, only 7.3% of the gas is utilized for electricity generation. Both efficiencies for BOD removal and digestion gas generation are considerably lower than those in USA and EU utilities due to low concentration of organic material in influent wastewater. Such low energy regeneration, in turn, results in significantly higher energy consumption in Korean plants, compared to that in USA and EU ones.

Cultivation of Spirulina platensis Using Pig Wastewater in a Semi-Continuous Process

  • Chaiklahan, Ratana;Chirasuwan, Nattayaporn;Siangdung, Wipawan;Paithoonrangsarid, Kalyanee;Bunnag, Boosya
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.609-614
    • /
    • 2010
  • The effluent from anaerobic digestion contains organic nitrogen and phosphorus, which are both required for growth of Spirulina platensis. Effluent (20%) from the upflow anaerobic sludge blanket (UASB) from a pig farm, supplemented with 4.5 g/l sodium bicarbonate ($NaHCO_3$) and 0.2 g/l urea fertilizer (46:0:0, N:P:K), was found to be not only a suitable medium for the growth of Spirulina platensis but also a low-cost alternative. Cost calculation showed that this medium is 4.4 times cheaper than modifized Zarrouk's medium. The average productivities of a semi-continuous culture grown under outdoor conditions in a 6-1 scale and a 100-1 pilot scale were 19.9 $g/m^2/d$ and 12 $g/m^2/d$, respectively. In addition, the biomass of organisms grown in UASB effluent contained approximately 57.9% protein, 1.12% $\gamma$-linolenic acid, and 19.5% phycocyanin. The average rates of bicarbonate, total nitrogen, and phosphorus removal were 380 mg/l/d, 34 mg/l/d, and 4 mg/l/d, respectively.

Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell (연료전지 연료가스인 하수처리장 소화가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho;Park, Kyu-Ho;Choi, Doo-Sung;Park, Jae-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • The Tancheon wastewater treatment plant(WWTP) in Seoul using anaerobic digestion to reduce the outlet sludge produces anaerobic digester gas which contains 65% $CH_4$ and 35% $CO_2$. The gas purification equipment was installed and operated to use Anaerobic Digester Gas(ADG) as a fuel for molten carbonate fuel cell(MCFC). The processes consist of the desulfurizer and the adsorption tower to remove $H_2S$ and siloxane in the gas. The gas purification equipment removed virtually over 95% of $H_2S$ and over 99% of siloxane. Results has demonstrated that the fuel cell can produce electrical output and hot water with negligible air emissions of CO, NOx and $SO_2$. The site provides the first opportunity in Korea for demonstrating Molten carbonate fuel cell(MCFC) which the digester gas was applied to the fuel gas.

Effects of the Redox Potential of the Acidogenic Reactor on the Performance of a Two-Stage Methanogenic Reactor

  • Phae, Chae-Gun;Lee, Wan-Kyu;Kim, Byung-Hong;Koh, Jong-Ho;Kim, Sang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 1996
  • Distillery wastewater was used in a thermophilic laboratory-scale two stage anaerobic digester to test the effects of the redox potential of the first acidogenic reactor on the performance of the system. The digester consisted of first a acidogenic reactor and the an upflow anaerobic sludge blanket (UASB) reactor. The digestor was operated at a hydraulic retention time (HRT) of 48 h. Under these conditions, about 90% of the chemical oxygen demand as measured by the chromate method ($COD_{cr}$) was removed with a gas production yield of 0.4 l/g-COD removed. The redox potential of the acidogenic reactor was increased when the reactor was purged with nitrogen gas or agitation speed was increased. The increase in reduction potential was accompanied by an increase in acetate production and a decrease in butyrate formation. A similar trend was observed when a small amount of air was introduced into the acidogenic reactor. It is believed that the hydrogen partial pressure in the acidogenic reactor was decreased by the above mentioned treatments. The possible failure of anaerobic digestion processes due to over-loading could be avoided by the above mentioned treatments.

  • PDF

Anaerobic Co-Digestion Characteristics of Food Waste Leachate and Sewage Sludge (BMP test를 통한 음폐수와 하수슬러지의 병합소화 특성 평가)

  • Lee, Suyoung;Yoon, Young-Sam;Kang, Jun-Gu;Kim, Ki-Heon;Shin, Sun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • We mix food waste leachate and sewage sludge by the proportion of 1:9, 3:7 and 5:5. It turns out that they produced 233, 298 and 344 $CH_4{\cdot}mL/g{\cdot}VS$ of methane gas. The result suggests that as the mixing rate of food waste leachate rises, the methane gas productions increases as well. And more methane gas is made when co-digesting sewage sludge and food waste leachate based on the mixing ratio, rather than digesting only sewage sludge alone. Modified Gompertz and Exponential Model describe the BMP test results that show how methane gas are produced from organic waste. According to the test, higher the mixing rate of food waste leachate is, higher the methane gas productions is. The mixing ratio of food waste leachate that produces the largest volume of methane gas is 3:7. Modified Gompertz model and Exponential model describe the test results very well. The correlation values($R^2$) that show how the results of model prediction and experiment are close is 0.92 to 0.98.

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

Optimal Conditions for Treatment of Swine Wastewater using Rhodopseudomonas palustris KK14 (Rhodopseudomonas palustris KK14를 이용한 돈분폐수처리의 최적조건 검토)

  • Kim, Han-Soo;Lee, Tae-Kyung;Kim, Hyuk-Il;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.295-302
    • /
    • 1994
  • For the development of biological wastewater treatment process using photosynthetic bacteria (PSB), photosynthetic sludge process consisted of anaerobic digestion and PSB reactor were designed for the treatment of swine wastewater and the optimal operating conditions in flask-scale were examined. Photosynthetic bacteria from soil, pond, rice field, ditch etc. were isolated in synthetic medium containing high amount of organic acids and finally isolated one strain KK14 which showed the most degradating ability of organic acids was selected for the treatment of swine wastewater. It was identified as Rhodopseudomonas palustris. In the anaerobic digestion stage, the maximum organic acid productivity was obtained at pH 5.0, $37^{\circ}C$, HRT 2 day and under anaerobic standing condition. The optimal operating conditions of PSB reactor for the treatment of swine wastewater were pH 7.0, $30^{\circ}C$ under 4,000 lux illumination, and optimal initial COD loading (kg COD/kg D. C. W of PSB) was 2 (20% v/v seeding) in the main purification stage. Maximum removal rate of COD reached 92% under the above optimal conditions for 5 days.

  • PDF

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power Generation and Stream - Results of the Field Investigation (바이오가스 이용 기술지침 마련을 위한 연구(I) - 현장조사 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to biogas utilization treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 11 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of biogas utilization. Consequently, Major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas, pretreatment of hydrogen sulfide, operation of power generation and steam. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), research the facilities problem through field investigation.