• Title/Summary/Keyword: sludge digestion

Search Result 287, Processing Time 0.116 seconds

A Comparative Measurement of Pb and Cd with Different Pretreatment (전처리방법에 따른 환경시료내 Pb과 Cd의 측정)

  • Yoon, Chun-Gyeong;Kwon, Tae-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 1999
  • Lead and cadmium were analyzed with different pretreatemnt methods. Paddy soil and wastewater sludge samples were used and the result was compared each other. Pretreatment method affected the concentration obtained from samples significantly. Large difference was illustrated between the results. The concentration by 0.1N HCl extraction method, an official analytical method for soil and solid wastes, was far lower than those by the EPA3050B and mixed-acid digestion methods. The reason might be that metals associated with organics and silicates are not easily extracted by 0.1N HCl, while digestion methods using strong acids and high temperature dissolved all the elements in the samples. It implies that pretreatment method should be specified in addition to concentration on the report of metal analysis for environmental samples. Acid digestion methods are not necessarily good because the concentration obtained does not represent the natural condition which is our concern in many cases. The 0.1N HCl extraction method does not fully represent the natural condition either. The metals associated with organics will be extracted eventually as organics decompose with time. Therefore, proper pretreatment and analytical methods should be developed for specific purpose, and their standardization is recommended.

  • PDF

A Study of Milk Waste Recycling as an Energy Source and Reduction of Pollution by Anaerobic Digestion (혐기성 소화를 통한 유가공 폐기물의 에너지원으로의 재활용과 오염 감소 방안에 관한 연구)

  • Lim, Samuel;Lim, Hyun-Ji;Jung, Kook-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • We confirmed methane production and reduction of pollution during anaerobic digestion of milk waste and analyzed the economic potential of using milk waste as a renewable energy source. The milk waste sludge was obtained from the Pasteur milk factory and processed by anaerobic digestion to produce methane. The methane production from two completely mixed tank reactors with an effective capacity of 6 ${\ell}$, 15 days of hydraulic retention time (HRT), and a mid-temperature of $35^{\circ}C$ averaged 4.11 ${\ell}$/day. The total chemical oxygen demand (TCOD) during production decreased from an initial 31,416 mg/${\ell}$ to 13,500 mg/${\ell}$, showing a maximum TCOD removal efficiency of 60%. When HRT was reduced to 12 days, methane production increased by 44% under a high-temperature condition of $55^{\circ}C$. An economic analysis based on these results was applied to a Korean milk factory of typical size and demonstrated that the installation of an anaerobic digester could provide sufficient economic profit.

  • PDF

Design of waste Sludge/Food Waste Biological Treatment Process using Closed ATAD System (밀폐형 ATAD system을 이용한 하수슬러지/음식물쓰레기 통합처리 공정 설계)

  • Kwon, Hyeok-Young;Ji, Young-Hwan;Song, Han-Jo;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.129-137
    • /
    • 2000
  • In this study, biological treatment process of MWWT(Municipal wet-waste Treatment) has been developed through a moduling of the containerized closed ATAD(Auto thermal aerobic digestion) system & closed vertical dynamic acerator, which were used for food waste and cattle manure, respectively. Though biological process has several advantages such as low concentrations of heavy metals and salts, proper and stable C/N ratio and constant reaction rate against the process treating two wastes separately, it has a obstacles of salt concentration and much usage of bulking agent such as wood chip. After rapid oxidation in the boxed tower reactor for 5 days, the content of sewage sludge would be reduced 65% on around, might be mixed with the food waste that had been treated in the static closed reactor during 6 days and put in the secondary static reactor for curing. During composting process, the odor contained in the gas generated from the reactor was removed by passing it through a biofilter as well as the leachate was treated in the wastewater treatment facility. Consequently, it seemed to be possible to compost sewage sludge at mild and stable operating condition and at low cost through the biological ATAD process resulting in the production of organic compost satisfying the specifications regulated by itself.

  • PDF

Treatment of N, P of Auto-Thermal Thermophilic Aerobic Digestion Filtrate with Struvite Crystallization (Struvite 결정화 반응을 이용한 고온 소화 여과액의 N, P 처리 특성)

  • Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.783-789
    • /
    • 2011
  • Recently, auto-thermal thermophilic aerobic digestion (ATAD) has a great attention for destruction of wasted sludge biomass in wastewater treatment plant. Reduction of sludge concentration has been successfully achieved with pilot scale ATAD and ceramic filtration process in field condition. However, high concentration of COD, total nitrogen (TN) and total phosphorus (TP) was observed in filtrate, which should be treated before recirculation of filtrate to biological wastewater treatment plant. This study was focused on removal of nitrogen and phosphorus contained in the filtrate of ATAD, using struvite crystallization method. The effect of operational and environmental parameters (such as, N, P and Mg ion concentration and molar ratio, pH, reaction time, agitation strength, seed dosage, and reaction temperature) on the treatment of TN and TP with struvite crystallization were evaluated. Magnesium (as $MgCl_26H_2O$) and phosphorus (as $K_2HPO_4$) ions were, if necessary, added to increase nitrogen removal efficiency by the crystal formation. Average concentration of $NH_4^+-N$ and $PO_4^{3-}-P$ of the filtrate were 1716.5 mg/L and 325.5 mg/L, respectively. Relationship between removal efficiencies of nitrogen and phosphorus and molar ratios of $Mg^{2+}$ and $PO_4^{3-}-P$ to $NH_4^+-N$ was examined. Crystal formation and nitrogen removal efficiencies were significantly increased as increasing molar ratios of magnesium and phosphorus to nitrogen. As molar ratio of $Mg^{2+}:PO_4^{3-}-P:NH_4^+-N$ were maintained to 2 : 1 : 1 and 2 : 2 : 1, removal efficiencies of nitrogen and phosphorus were 71.6% and 99.9%, and 93.8% and 98.6%, respectively. However, the effect of reaction time, mixing intensity, seed dose and temperature on the struvite crystallization reaction was not significant, comparing to those of molar ratios. Settled sludge volume after struvite crystallization was observed to be reduced with increase of seed dose and to be increased at high temperature.

Effect of Ammonia Nitrogen Loading Rate on the Anaerobic Digestion of Slurry-typed Swine Wastewater (슬러리형 돈사폐수의 혐기성 소화시 암모니아 부하의 영향)

  • Won, Chul-Hee;Kwon, Jay-Hyouk;Rim, Jay-Myoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • This research examined the effect of ammonia nitrogen loading rate(NVLR) on the anaerobic digestion of slurry-typed swine wastewater. The anaerobic reactor was used an upflow anaerobic sludge blanket (UASB) process. This UASB reactor was operated at a NVLR of $0.02{\sim}0.96kg{NH_4}^+-N/m^3/day$. The methane content showed the range of 73.3~77.9% during the steady state period. Free ammonia(FA) concentration increased over inhibition level as pH increase from 7.3 to 8.2. However, in consideration of methane content, methane producing bacteria (MPB) inhibition by FA and total ammonia(TA) was not observed. A stepwise increase of the NVLR resulted in a deterioration in the COD removal rate in UASB reactor. The COD removal rate were 60% for NVLR up to $0.55kg{NH_4}^+-N/m^3/day$. As the NVLR increased from 0.09 to $0.96kg{NH_4}^+-N/m^3/day$, the biogas production rate varied from 3.71 to 9.14L/d and the methane conversion rate of the COD varied from 0.32 to $0.20m^3CH_4/kg$ COD removed. Consequently, in considerations of FA concentration, COD removal rate, and $CH_4$ production rate, the UASB reactor must be operated to lower than $0.40kg{NH_4}^+-N/m^3/day$ of NVLR.

Effect of pH on Phase Separated Anaerobic Digestion

  • Jung, Jin-Young;Lee, Sang-Min;Shin, Pyong-Kyun;Chung, Yun-Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.456-459
    • /
    • 2000
  • A pilot scale experiment was performed for a year to develop a two-phase anaerobic process for piggery wastewater treatment (COD: 6,000mg/L, BOD: 4,000mg/L, SS: 500mg/L, pH 8.4, alkalinity 6,000mg/L). The acidogenic reactor had a total volume of 3㎥, and the methanogenic reactor, an anaerobic up-flow sludge filter, combining a filter and a sludge bed, was also of total volume 3㎥(1.5㎥ of upper packing material). Temperatures of the acidogenic and methanogenic reactors kept at 20$^{\circ}C$ and 35$^{\circ}C$, respectively. When the pH of the acidogenic reactor was controlled at 6.0-7.0 with HCl, the COD removal efficiency increased from 50 to 80% over a period of six months, and as a result, the COD of the final effluent fell in the range of 1,000-1,500 mg/L. BOD removal efficiency over the same period was above 90%, and 300 to 400 mg/L was maintained in the final effluent. The average SS in the final effluent was 270 mg/L. The methane production was 0.32㎥ CH$_4$/kg COD(sub)removed and methane content of the methanogenic reactor was high value at 80-90%. When the pH of the acidogenic reactor was not controlled over the final two months, the pH reached 8.2 and acid conversion decreased compared with that of pH controlled, while COD removal was similar to the pH controlled operation. Without pH control, the methane content in the gas from methanogenic reactor improved to 90%, compared to 80% with pH control.

  • PDF

Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater

  • Chollom, Martha Noro;Rathilal, Sudesh;Swalaha, Feroz Mohammed;Bakare, Babatunde Femi;Tetteh, Emmanuel Kweinor
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2020
  • This study was aimed at using the Central Composite Design (CCD) and Box-Behnken Design (BBD) to compare the efficiency and to elucidate the main interacting parameters in the upflow anaerobic sludge blanket (UASB) reactor, namely: Organic Loading Rate (OLR), Hydraulic Retention Times (HRT) and pH at a constant temperature of 35℃. Optimum HRT (15 h), OLR (3.5 kg.m-3.d-1) and pH (7) resulted in biogas production of 5,800 mL/d and COD removal of 80.8%. BBD produced a higher desirability efficiency of 94% as compared to the CCD which was 92%. The regression quadratic models developed with high R2 values of 0.961 and 0.978 for both CCD and BBD, respectively, demonstrated that the interaction models could be used to pilot the design space. BBD model developed was more reliable with a higher prediction of biogas production (5,955.4 ± 225.3 mL/d) and COD removal (81.5 ± 1.014%), much close to the experimental results at a 95% confidence level. CCD model predictions was greater in terms of COD removal (82.6 ± 1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 < 5,800 mL/d) which was less than the experimental results. Therefore, RSM can be adapted for optimizing various wastewater treatment processes.

Application of tubular membrane to thickening process as a pre-treatment of anaerobic digester (관형막을 이용한 혐기소화조의 전처리 농축공정으로써 적용가능성 연구)

  • Kang, Hee-Seok;Park, Ki-Tae;Park, Jung-Woo;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • The purpose of this study is to estimate the applicability of a stable anaerobic digester using a separator membrane to the preprocessing thickening process. The results of the experiments showed about a 47.16% weight loss rate for the sludge under anaerobic condition, and about 41.17% under intermittent aeration condition. The concentrations of rejection water were $SCOD_{Cr}$ 25 mg/L, T-N 16.6 mg/L, and T-P 1.4 mg/L on the average under the intermittent aeration condition, which were lower than the concentrations of rejection water under an anaerobic condition. As for the factors affecting the reduction of the flux, correlation analyses of TTF, MLSS, $SCOD_{Cr}$, and $EPS_{Protein}$, $EPS_{Polysacchride}$ resulted in -0.97, -0.95, -0.84 and -0.86, -0.95, respectively, which showed that TTF had the highest correlation to the reduction of the flux. In addition, it was concluded that MLSS, $SCOD_{Cr}$ and $EPS_{Protein}$, $EPS_{Polysacchride}$ also have close correlations. The results are considered to show that, in the case of the process using a tubular membrane in the preprocessing process of an anaerobic digester, an intermittent aeration condition of the thickener considering the contamination of the membrane and load of rejection water is appropriate for the stable preprocessing process.

Effect of Effluent Recirculation and Internal Return on the Performance of UASB Process (유출수 재순환 및 내부반송이 UASB 반응조 운전효율에 미치는 영향)

  • Kim, Jin-Hyok;Han, Seong-Kuk;Kwon, Oh-Hoon;Yoon, Kyung-Jin;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2011
  • Dumping of wastes at sea will be strongly prohibited from 2012 by London Dumping Convention. So, finding the method for treatment of food waste at ground is needed urgently. The solution for above mentioned problem is the resource development from food waste leachate by using Upflow Anaerobic Sludge Blanket (UASB) process. In this research, we try to find out the effect of effluent recirculation and internal return influence on organic removal efficiency and biogas production. Laboratory investigation was conducted for 25 days with only internal recycling, and then, effluent recirculation was performed. As the result of experiments, the organic removal efficiency was above 90%, and the content of methane was 78~80% during operating time. Also, when UASB reactor was operated to over the 3 Q effluent recirculation, there was not 1 N-NaOH consumption any more, therethrough the experiment was economically and stably carried out.

Anaerobic treatment of red-bean processing wastewater in a sludge bed reactor (슬러지반응기에서 팥가공폐수의 철기성 처리)

  • 안재동;금재우;홍종향
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.29-37
    • /
    • 1994
  • Anaerobic treatment of wastewater of the red- bean processing industry was carried out and discussed an anaerobic sludge bed reactor( ASBR) as a preliminary study to evaluate applicability of given processes. The dimension of reactor were same as 0.09m- ID$\times $1.5m- height. The type of substrate and the hydraulic retention time( HRT) were considered as experimental variables. The synthetic wastewater with glucose in the laboratory, the wastewater from the red bean processing industry mixed with synthetic wastewater with variation of mixing percent were fed as substrate. The hydraulic retention time was changed from one day to five days. The gas production, the methane content in produced gas, efficiencies of COD removal and 55 removal were evaluated as principal characteristics. With synthetic wastewater as a substrate and at a hydraulic retention time of one day, characteristics of ASBR was the gas production(12$\ell$/day ), the methane content of produced gas(60%), the efficiency of COD removal(92%) and 55 removal(30%). With the real wastewater and at a hydraulic retention time of one day, the gas production and the efficiency of COD removal of the ASBR decreased with the proportion of real wastewater. The gas production and the efficiency of COD removal with real wastewater only was decreased to 70% and 87% of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. With real wastewater only as a substrate in the ASBR, the gas production was decreased with an increase of HRT, but the efficiency of COD removal increased with HRTI like the usual trend reported. As a conclusion, the wastewater of the red- bean Processing industry could be treated by anaerobic digestion successfully in the ASBR.Anaerobic treatment of wastewater of the red- bean processing industry was carried out and discussed an anaerobic sludge bed reactor( ASBR) as a preliminary study to evaluate applicability of given processes. The dimension of reactor were same as 0.09m- ID$\times $1.5m- height. The type of substrate and the hydraulic retention time( HRT) were considered as experimental variables. The synthetic wastewater with glucose in the laboratory, the wastewater from the red bean processing industry mixed with synthetic wastewater with variation of mixing percent were fed as substrate. The hydraulic retention time was changed from one day to five days. The gas production, the methane content in produced gas, efficiencies of COD removal and 55 removal were evaluated as principal characteristics. With synthetic wastewater as a substrate and at a hydraulic retention time of one day, characteristics of ASBR was the gas production(12$\ell$/day ), the methane content of produced gas(60%), the efficiency of COD removal(92%) and 55 removal(30%). With the real wastewater and at a hydraulic retention time of one day, the gas production and the efficiency of COD removal of the ASBR decreased with the proportion of real wastewater. The gas production and the efficiency of COD removal with real wastewater only was decreased to 70% and 87% of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. However, the methane content in produced gas and the efficiency of 55 removal with real wastewater only was increased significantly by 1.25 times and two times of those with synthetic wastewater only, respectively. With real wastewater only as a substrate in the ASBR, the gas production was decreased with an increase of HRT, but the efficiency of COD removal increased with HRTI like the usual trend reported. As a conclusion, the wastewater of the red- bean Processing industry could be treated by anaerobic digestion successfully in the ASBR.

  • PDF