• Title/Summary/Keyword: sludge digestion

Search Result 287, Processing Time 0.024 seconds

Simultaneous Treatment of Sewage Sludge and Food Wastewater Using Combined Digestion Process (혼합 소화공정을 통한 하수 슬러지와 음폐수 병합 처리)

  • Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.581-586
    • /
    • 2017
  • In this study, in order to find the feasibility of thermophilic biological pre-treatment for the co-digestion of food wastewater and sewage sludge, digestion efficiency of the combined thermophilic aerobic and mesophilic anaerobic process and its effect on methane production were investigated. Also, a lab-scale co-digestion process was operated to observe parameter changes according to the increase of organic loading rates using different dilution ratios of distilled water and food wastewater (1/3 [Run I], 2/3 [Run II] in addition to using the raw food wastewater [Run III]). The results indicated that co-digestion process maintained quite stable and constant pH during entire experiments. With regard to VS removal, the higher removal was observed in the combined process and the removal efficiency was 52.24% (Run I), 66.59% (Run II) and 72.53 (Run III), respectively. In addition, the combined process showed about an 1.6-fold improved methane production rate and significantly higher methane yield than that of using single anaerobic digestion process.

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Study on Production Characteristic of Methane Gas in Anaerobic Digestion Reactor according to Input Type of Food Waste (음식물쓰레기 주입형태에 따른 혐기성소화조의 메탄가스 발생특성에 관한 연구)

  • Lee, Young-Hyeong;Park, Sung-Hyun;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.55-60
    • /
    • 2001
  • This study was performed to investigate production characterisitic of methane gas in anaerobic digestion reactor according to input type of food waste. In the production rates of $CH_4$ gas per g $VS_{added}$, reactor R2, R3, R4, R5, and R6 in which sewage sludge and food waste were combined with mixing ratio of 1:0.1, 1:0.3, 1:0.5, 1:1, and 1:2 showed 85mL, 62mL, 67mL, 72mL, and 73mL $CH_4/g$ $VS_{added}$ which were much more than sewage sludge digestion alone. Methane content according to crushing size of food waste respectively showed 51.1%(raw food), 53.1%(2~4mm), and 50.6%(<2mm), In case of methane production according to washing of food waste, R12(7~8 times washing) showed the highest methane production.

  • PDF

Effect of Sonification on the Ananerobic Digestion of Waste Activated Sludge(I) -Disintegration of Waste Activated Sludge Using Ultrasonic and Alkaline Pre-treatments- (초음파가 폐활성 슬러지의 혐기성 소화에 미치는 영향(I) -초음파 및 알칼리 전처리를 이용한 폐활성 슬러지의 가용화-)

  • Han, Sun-Kee;Lee, Chae-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.96-102
    • /
    • 2009
  • The effect of ultrasonic and alkaline pre-treatments on waste activated sludge (WAS) disintegration was investigated for improved anaerobic digestion. As WAS was treated by either methods, longer capillary suction time (CST) was required due to the break-up of cell walls, and its supernatant demonstrated increase in soluble chemical oxygen demand (SCOD), protein content and turbidity. Ultrasonic process combined with alkaline pre-treatment demonstrated higher SCOD and protein content in the supernatant as compared with ultrasonic pre-treatment only. However, the degree of disintegration (DDCOD) of WAS decreased with increasing solid concentration as both WAS disintegration methods employed simultaneously.

  • PDF

Experimental Evaluation of Intermittent Leachate Recirculation Anaerobic System to digest Source from Separated Food Waste (단속식 침출수 순환형 음식물류 폐기물 혐기성 소화 공법에 대한 실험적 특성 파악)

  • Lee, Je-Seung;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.57-66
    • /
    • 2014
  • The leachate recirculation anaerobic digestion system has the advantage of stable methane gas generation compared with existing one phase systems. In this study, an anaerobic digestion system fed with source separated food waste from school cafeteria was studied with different food waste/inoculum anaerobic sludge volume ratios (8:2, 3:7, 2:8). From this study, leachate recirculation anaerobic reactor with food waste/inoculum anaerobic sludge volume ratio of 2:8 that is 9 gVS/L of OLR(Organic Loading Rate) had the highest gas production. Also this anaerobic reactor showed daily decrease of H2S and NH3 contents in produced gas. Average biogas yield was 1.395 m3 Biogas/kg VS added. Other anaerobic reactors with food waste/inoculum anaerobic sludge volume ratio of 8:2 and 3:7 stopped methane gas production.

Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes

  • Lee, Beom;Park, Jun-Gyu;Shin, Won-Beom;Kim, Beom-Soo;Byun, Byoung-su;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.662-669
    • /
    • 2019
  • Anaerobic digestion is a popular sewage sludge (Ss) treatment method as it provides significant pollution control and energy recovery. However, the low C/N ratio and poor biodegradability of Ss necessitate pretreatment methods that improve solubilization under anaerobic conditions in addition to anaerobic co-digestion with other substrates to improve the process efficiency. In this study, three pretreatment methods, namely microwave irradiation, ultrasonication, and heat treatment, were investigated, and the corresponding improvement in methane production was assessed. Additionally, the simplex centroid design method was utilized to determine the optimum mixture ratio of food waste (Fw), livestock manure (Lm), and Ss for maximum methane yield. Microwave irradiation at 700 W for 6 min yielded the highest biodegradability (62.0%), solubilization efficiency (59.7%), and methane production (329 mL/g VS). The optimum mixture ratio following pretreatment was 61.3% pretreated Ss, 28.6% Fw, and 10.1% Lm. The optimum mixture ratio without pretreatment was 33.6% un-pretreated Ss, 46.0% Fw, and 20.4% Lm. These results indicate that the choice of pretreatment method plays an important role in efficient anaerobic digestion and can be applied in operational plants to enhance methane production. Co-digestion of Ss with Fw and Lm was also beneficial.

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor (연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거)

  • Kim, Sung Hong;Lee, Yoon Heui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.669-675
    • /
    • 2006
  • Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.

${\cdot}$ 무기 복합 고분자를 이용한 granule의 활성도 실험

  • Jeong, Hyeon-Seong;Kim, Yong-Hwan;Ryu, Jeong-Yong;Song, Bong-Geun;Lee, Sang-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.676-679
    • /
    • 2003
  • Long time over 6 month was required to form granuler sludge, which is critically necessary for UASB reactor. By feeding both high molecular cationic polymer and anionic silica sol to conventional digestion sludge, granular sludge was obtained within 5 minutes. Succession adaptation was performed for granular sludge for 30 days. $80{\sim}90%$ COD removal efficiency was shown with granular sludge, which was comparable with that of typical UASB granular sludge.

  • PDF

Comparison of Single-stage Thermophilic and Mesophilic Anaerobic Sewage Sludge Digestion (단상 고온 및 중온 혐기성 하수 슬러지의 소화 공정 비교)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.532-536
    • /
    • 2016
  • In this study, single-stage continuous anaerobic reactors to treat sewage sludge were operated under different temperature (55 and $35^{\circ}C$; $R_{TAD}$ and $R_{MAD}$) to evaluate the reactor stability and performance of the thermophilic and mesophilic anaerobic digestion. During the overall digestion, both anaerobic reactors maintained quite stable and constant pH and total alkalinity (TA) values in the range of 6.5-8.0 and 3-4 g $CaCO_3/L$, respectively. After the start-up period, $R_{TAD}$ showed 10% higher VS removal efficiency than that of $R_{MAD}$ ($R_{TAD}$; 43.3%; $R_{MAD}$ : 33.6%). Although organic acids such as acetic and propionic acid were detected in both anaerobic reactors at the start-up period, all organic acids in $R_{TAD}$ and $R_{MAD}$ were consumed at the steady state condition. Also $R_{TAD}$ showed 31.4 % higher methane production rate (MPR) than that of $R_{MAD}$ at the steady state condition ($R_{TAD}$; 243 mL $CH_4/L/d$; $R_{MAD}$ : 185 mL $CH_4/L/d$). Meanwhile, the experimental results indicated similar methane yield between $R_{TAD}$ and $R_{MAD}$.

A Study on Environmental and Economic Analysis for Each Treatment of Sewage Sludge(III) - Results of Environmental Assessment - (하수슬러지 처리방법별 환경성 및 경제성 분석에 대한 연구(III) - 환경성 분석 중심으로 -)

  • Bae, Jisu;Lee, Suyoung;Cho, Yuna;Kwon, Younghyun;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.5-13
    • /
    • 2016
  • This study investigated the environmental and economical assessment for sewage sludge treatment options including biogasification, incineration, carbonization, drying, and solidification. For the economical feasibility the 30 plants with anaerobic digestion treatment and the 17 plants without anaerobic digestion treatment were investigated. In regarding to the environmental assessment, the air emission pollutants (SOx, NOx, etc) from incineration and carbonization plants were assessed and 1~34 % of emission limits was emitted. Drying and solidification plants emitted about 30 % of odour limits. And the rest of the pollutants were emitted either at not-detectable level or at below the limits. When the by-products from the solidification treatment was used as landfill cover materials, the unconfined compression strength could be below the limit and it could cause an unsafe condition for those passing vehicles and the possibility of the ground subsidence. There has been a maintenance difficulty due to frequent blockage and operational failure. The result of the comparison of sewage sludge treatment options showed that anaerobic digestion+incineration was the most economically feasible considering incineration and drying. For smaller treatment capacity, solidification was the most economically feasible considering carbonization and solidification and anaerobic digestion+carbonization was the most economically feasible considering carbonization and solidification.