• Title/Summary/Keyword: slow-grower

Search Result 10, Processing Time 0.022 seconds

Dissimilatory Nitrate Reduction Characteristics of Indigenous Soybean Rhizobia Distributed in Korea Soils (한국에 분포되어 있는 토착대두 근류균의 질산 환원 특성)

  • Choi, Young-Ju;Choi, Yong-Lark;Yun, Han-Dae;Ryu, Jin-Chang;Lee, Sang-Kyu;Cho, Moo-Je
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.175-181
    • /
    • 1986
  • Eightyseven strains of indigenous Rhizobia were isolated from the nodule of soybean cultivar, Danyup, cultivated in four different soils sampled from continuously soybean cultivated and newly reclaimed fields. The strains were grouped into Bradyrhizobium japanicum (slow-grower:55 strains) and Rhizobium fredii (fast-grower: 32 strains). The both groups could be divided into two sub-groups according to the denitrification characteristics, that is, denitrifying fast-grower (F-I), nitrate respiring fast-grower (F-II), denitrifying slow-grower (S-I). and nitrate respiring slow-grower (S-II). Among the 87 isolates, F-I, F-II, S-I and S-II sub-groups were 10, 22, 48 and 7 strains, respectively. The one-and two-dimensional polyacrylamide gel electrophoretic pattern of the four sub-groups were compared and discernible difference was observed between fast and slow-grower, but the difference was not discernible between subgroups within the same growth rate group.

  • PDF

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -IV. Dissimilartory Nitrate Reduction and Protein Characteristics of Indigenous Soybean Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)IV보(報) 토착대두근류균(土着大豆根瘤菌)의 질산환원(窒酸還元) 및 균체단백질(菌體蛋白質) 특성(特性))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Ju-Yeong;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.275-283
    • /
    • 1987
  • In order to find out the effectiveness of nitrogen fixation in rhizobia-legume symbiotic relationship, ecological and physiological characteristics of indigenous rhizobia distributed in Korean soils, that is, dissimilatory nitrate reduction patterns of indigenous soybean rhizobia isolated from four different soils, and differences in one-and two-dimensional polyacrylamide gel electrophoretic pattern of proteins among the each subgroups of Bradyrhizobium japonicum and Rhizobium fredii, were investigated. The results were summarized as follows: 1. The indigenous soybean rhizobia isolated from four different soils could be classified into 4 groups depending on growth rate and dissimilatory nitrate reduction pattern, that is, $S_1$ (slow-grower; Bradyrhizobium japonicum and nitrate denitrifier), $S_2$ (slow-grower; Bradyrhizobium japonicum and nitrate respirer), $F_1$ (fast-grower; Rhizobium fredii and denitrifier), and $F_2$ (fast-grower; Rhizobium fredii and nitrate respirer). 2. The population ratio of fast- to slow-growing R. japonicum was 39% to 61%, and the ratio of denitrifier to nitrate respirer was 31% to 69% and 89% to 11% in fast and slow-grower, respectively. Some differences were observed between fast- and slow-growing R. japonicum but no significant difference was observed between denitrifier and nitrate respirer within same growth type by one and two dimensional SDS-polyacrylamide gel electrophoretic patterns.

  • PDF

Biochemical Characterization of Fast-and Slow-Growing Rhizobium japonicum (Fast-growing과 Slow-growing Rhizobium japonicum의 생화학적 특성)

  • Kim, Chang Jin;Kim, Sung Hoon;Mheen, Tae Ick
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 1985
  • Rhizobium japonicum isolates from all around Korea could be classified into two groups, i.e., acid producing fast-growers with 2.4 hour mean generation time and non-acid producing slow-growers in yeast extract-mannitol medium with 13.1 hour mean generation time. Tested fast-growers were higher in 6-phosphogluconate dehydrogenase activity than slow-growers were and used sucrose as carbon source whereas slow-growers did not. Fast-grower R4, R257, R278, showed tolerance even in 0.5M NaCl or above and the growth of all the strains tested were inhibited at below pH 4.5. Relative symbiotic activities of nitrogen fixation for these isolated with Glycine max cv. Jangyeobkong (commercial soybean cultivar mostly cultivated in Korea) ranged 0.1 to 2.0 comparing to that of R. japonicum L-259 (NRRL), without regard to their growth rate.

  • PDF

Isolation of Plasmid DNA and Physiological Characteristics of Rhizobium japonicum (Rhizobium japonicum의 생리적(生理的) 특성(特性) 및 Plasmid DNA의 분리(分離))

  • Oh, Seh Heun;Kang, Sang Jai;Park, Woo Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.69-82
    • /
    • 1994
  • This study was conducted to investigate the physiological characteristics and to isolate plasmid DNA of R. japonicum strains. The results obtained were as follows; Strains S117, S118, 005, 011 and DY-1 were slow-growers and showed alkaline reaction, whereas strains S110, S111, S114, S116, S120 and 010 were fast-growers and produced acid reaction in YEM broth. All the fast- and slow-growing R. japonicum showed gram negative and formed mucous white colony on agar plate. After 7 days, the colonies of the fast-growers were between 2.0 and 4.0mm in diameter, whereas those of slow-growers were approximately between 0.5 and 1.5mm. The fast-growers were uniformly sensitive to the pH of 4.5 and tolerant of the pH of 9.5, whereas the reverse was found for the slow-growers. All the fast-growers were able to grow in the presence of 2% NaCl however the slow-growers were not grown. All the microorganisms grew rapidly in simple mineral salt medium containing as the sole source of carbon. Starch was rarely utilized. All the fast-growers utilized sucrose. The slow-growing R. japonicum strains examined usually contained 1 to 3 plasmid DNA ranging between 15Kb and 250 Kb, whereas the fast-growing R. japonicum strains contained 1 to 3 plasmid DNA ranging from 20 Kb to 250Kb.

  • PDF

Glycine Effect on Spheroplasting and Nodule Bacteroids of Rhizobium Jjaponicum (Rhizobium japonicum원형질체 형성과 근류 bacteroids에 미치는 glycine의 영향)

  • Kim, Sung-Hoon;Kim, Chang-Jin;Rhee, Yoon;Yoo, Ick-Dong;Mheen, Tae-Ick
    • Korean Journal of Microbiology
    • /
    • v.23 no.3
    • /
    • pp.197-202
    • /
    • 1985
  • Different spheroplasting methods using glycine were tried to fast and slow-growing R. japonicum. Although one of the fast growers, R-271 showed normal growth in the presence of 4mg/ml glycine, cell morphology and colony forming unit (CFU) were greatly different from the cells of late log phase grown in the medium without glycine. In parallel, R-271 became sensitive to lysozyme after 6hr incubation in medium containing glycine (3.5mg/ml). After 24hr cultivation in glycine $(100{\mu}g/ml)$ medium, one of the slow growers, R-214 was also susceptible to lysozyme action. Spgeroplasting frequency of both strains was over 96% by glycine and lysozyme. Spheroid cell was also found in bacteroids from root nodule and soluble glycine content was relativiely smaller than other amino acids in soybean nodule extracts.

  • PDF

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

Competition and Host-strain Interaction of Soybean Rhizobium Strains on Two Soybean Cultivars (콩 근류균계간 경합과 숙주 친화성의 품종간 차이)

  • 박의호;싱글톤폴
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.718-724
    • /
    • 1996
  • Two soybean cultivars, ‘Lee’ and ‘Peking’, were used to evaluate the competition and interaction of rhizobium strains PRC205 (R. fredii, fast-grower) and USDA110 (B. japonicum, slow-grower). Strains were inoculated separately on the root parts of a split-root growth system. Both root sides were inoculated simultaneously with four combinations of strain treatment to evaluate the competition of strains. And to evaluate the interaction of strains one side of split-root system was inoculated a week prior to the other side. Nodule mass and dry weight of the plants were measured 3 weeks after treatments. PRC205 showed no effective nodulation and no competing ability with USDA110 on Lee cultivar, however, contrary results on Peking cultivar. Top dry weight of Lee inoculated with PRC205 was much lower than that of any other inoculation treatments, however, in Peking that with PRC205 was higher than that with USDA110. There were no differences in root dry weight among the inoculation treatments. USDA110 used as primary inoculant suppressed nodule mass of opposite side, secondary inoculant, severely in both cultivars. PRC205 showed same tendency as USDA110 in Peking, but revealed little suppression effects on USDA110 used as secondary inoculant in Lee. USDA110 used as primary inoculant in Lee and PRC205 in Peking showed much more dry weight of soybean plants than that of other treatments.

  • PDF

Assessment of Mycobacterial Viability by Fluorospectrophotometry (형광분광측정법에 의한 항산균의 생명력 평가)

  • 이영남
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.147-153
    • /
    • 1986
  • Viable potential of Mycobacterium smegmatis, a slow grower in vitro cultivation and of M. leprae, an obligate intracellular parasitic bacterium, which can not be cultured yet in vitro was assessed by fluorospectrophotometry. Bacterial cells in different numbers and under various physiological status were incubater with fluorescein diacetate(FDA). After an incubation of the bacterial preparations with FDA at specified conditions, amount of fluorescein inside bacteria was measured by a fluorospectrophotometer at 470nm and 510nm of excitation and emission wavelengths, respectively. Fluorounit given by such bacteria showed a correlation with assessment of viability of the same preparations made by other methods, such as optical density and colony forming units of M. smegmatis and intracellular ATP content of M. leprae. The possible use of fluorospectrophotometry in assessing viability or physiological potential of bacteria, particularly intracellular parasites and fastidious organisms to culture in vitro is discussed in relation to other methods.

  • PDF

Screening and Physiological Characteristics of Mutants in Rhizobium japonicum (Rhizobium japonicum에 있어서 변이주(變異株)의 선발(選拔) 및 특성(特性))

  • Park, Chang Dong;Kang, Sang Jai;Park, Woo Churl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.57-68
    • /
    • 1994
  • This experiment was conducted to isolate the mutants from S118 and to investigate the physiological characteristics of R. japonicum mutants. The results obtained were as follows; Based on nodulation and acetylene reduction, nodulation of rhizobia was divided into 4 groups, i.e. slow-nodulation, earlier-nodulation, infrequent-nodulation and non-nodulation. At 5% significant level, the growth of inoculated plant with SM255 was bad, but that of HP277 was good. Root-hairs curling was induced by strains S118 and HP277 on soybean, but not by strain SM255. S118 and SM255 were found to be slow-gorwers and produced alkali, whereas strain HP277 was fast-grower and produced acid in YEM broth. In litmus milk reaction, all strains indicated alkaline reaction, and serume-zone was induced weakly by HP277. All of the strains tested in this experiment utilized sucrose. HP277 and LP268 utilized xylose, whereas S118 and SM255 did not. SM255 showed bad growth in nitrogen carriers however utilization of $Ca(NO_3)_2{\cdot}4H_2O$ by HP277 was possible at 25mM and 10mM level. To compare with S118, the protein band of SM255's cell protein electrophoresis was not developed at 0.62 Rm position.

  • PDF