• Title/Summary/Keyword: slot-line

Search Result 257, Processing Time 0.018 seconds

New Fiduciary Plate and Orientation Marker for High Energy Radiation Therapy (고에너지 방사선치료의 정도관리를 위한 Fiduciary Plate 및 Orientation Marker의 개발)

  • Wu Hong-Gyun;Huh Sun Nyung;Kim Hak Jae
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • Purpose : A new fiduciary plate and orientation marker have been devised to assist the quality assurance (QA) procedures for port films in radiation therapy department. The plate is used in conjunction with the film/cassette combination during weekly QA procedures, at Seoul National University Hospital (SNUH), in order to verify treatment fields in high radiation therapy. Materials and Methods : A new fiduciary plate was fabricated using an acrylic plate, cerrobend, standard blocking tray and mercury. The acrylic plate had the dimension of $1{\times}25{\times}25$ cm, with two fiduciary markers. The plate was rigidly attached onto the standard blocking tray, thus making it easier to set the fiduciary plate to the center on the radiation field on the linear accelerator. The plate had two 2-mm vertical and horizontal lines, with the minor scales in 2-cm steps. The orientation marker was a small mercury filled disk, which was inserted into the plate. Results : The geometrical structure of the lines in the plate makes it easier to correlate two different images between the simulation and port films. The marker clearly indicated the orientation of the film, for example, the anterior, posterior, left, right and various oblique orientations, without the placement of a conventional orientation marker. Also, the new orientation marker could easily be applied to the simulator by placing the small orientation marker onto the image intensifier or in front of the film/cassette holder. Conclusions : The new fiduciary plate appears to be useful in verifying the treatment fields, and the new orientation marker makes the film orientation simple, which is expected to lower the block fabrication errors.

Bandwidth Improvement of a Series-fed Two Dipole Array Antenna (직렬 급전된 두 개의 다이폴 배열 안테나의 대역폭 향상)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5214-5218
    • /
    • 2011
  • In this paper, bandwidth improvement of a series-fed two dipole array(STDA) antenna applicable for mobile communication base station antennas is studied. The proposed STDA antenna consists of two strip dipole antennas with different lengths which are connected directly trough a coplanar stripline(CPS). By adjusting the spacing between the two dipoles and the length of the second dipole, the bandwidth of the STDA can be enhanced. In addition, an integrated balun composed of a short-circuited microstrip line and a slot line is utilized to minimize the area required for a feeding part, and a broadband impedance matching is obtained by adjusting the feeding point. Based on the proposed antenna structure, an STDA antenna covering the frequency band ranging from 1.75 GHz to 2.7 GHz, which includes almost all the existing mobile communication frequency bands, with more than 5 dBi gain is designed and fabricated on an FR4 substrate with dielectric constant of 4.4 and thickness of 1.6mm, and experimentally tested. The fabricated antenna shows impedance bandwidth of 49%(1.7-2.8 GHz) for VSWR<2, a gain higher than 5.5 dBi, and a front-back ratio better than 12 dB.

Lifejcket-Integrated Antenna for Search and Rescue System (탐색 및 구조 시스템용 구명조끼 내장형 안테나)

  • Lim, Ji-Hun;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.367-371
    • /
    • 2014
  • When the crew or passengers fall into the water due to marine accident of vessel, it is very important to rescue them quickly. In the case of marine accidents, most people in distress have been wearing a lifejacket, so if the GPS and Cospas-Sarsat communication module will be integrated within the lifejacket, it is easy to rescue them. In this paper, development of the dual band lifejacket-integrated antenna for GPS and Cospas-Sarsat communication is discussed. The antenna with the FR-4 substrate of 0.2mm thickness for flexibility was designed that it can be fitted close to the shoulder of the life jacket and operate at 1.575GHz and 406MHz. The GPS communication antenna was implemented with a ring-slot antenna having a circular polarized characteristic and a meander type linear polarized antenna is used as Cospas-Sarsat communication. The two antennas are fed by a single microstrip line and an open stub is used to minimize the mutual interference between the two antennas. The performance of the fabricated antenna attached to the life vest is confirmed by the measurement of the return loss at GPS and Cospas-Sarsat frequency bands.

FPGA Implementation of a Burst Cell Synchroniser for the ATM-PON Upstream (ATM-PON의 상향에서 버스트 셀 동기장치의 FPGA 구현)

  • Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee;Sohn, Soo-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.1-9
    • /
    • 2001
  • In the APON(ATM Passive Optical Network), the transmission of the upstream traffic is based on a TDMA(Time Division Multiple Access) method that an OLT(Optical Line Termination) permits ONUs(Optical Network Units) sending cells by allocating time slots. Because the upstream is not a streaming mode, the cell synchronizer has to be operated in the burst mode. Also, the cell phase monitor is required to prevent collisions between cells which are transmitted by multiple ONUs through a single optical fiber. In this paper, a TDMA burst cell synchroniser is implemented with the FPGA(Field Programmable Gate Array) being used in the APON based on G.983.1 for transmitting upstream cells. It has two main functions which are the upstream data recovery and the phase monitoring. The former is to recover the upstream data and clock in the OLT by seeking the preamble which is the overhead of the upstream time slot and by aligning the phase of the bit and cell with the system clock. The latter is to provide the information to the ONU to compensate for the equalization delay by monitoring continuously the phase difference between adjacent cells to avoid the cell collision on the upstream.

  • PDF

Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks (유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • A finite element method is used to simulate interaction of laser-based ultrasounds with surface breaking tracks in elastic media. The laser line source focused on the surface of semi-infinite medium is modeled as a shear dipole in 2-D plane strain finite elements. The shear dipole-finite clement model is found to give correct directivity patterns for generated longitudinal and shear waves. The interaction of surface waves with surface breaking cracks (2-D machined slot) is considered in two ways. Both the source and receiver are fixed with respect to the cracks in the first case, while the source is moving in another case. It is shown that the crack depth tested in the range of 0.3-5.0mm $({\lambda}_R/d=0.21{\sim}3.45)$ can be measured using the corner reflected waves produced by the fixed laser source. The moving laser source is found to cause a large amplitude change of reflected waves near crack, and the crack whose depth is one order lower than the wavelength ran be detected from this change.

Design and Fabrication of WLAN / UWB Antenna for Marine High Speed Communication Network System (해양 초고속 통신망 시스템을 위한 WLAN(Wireless Local Area Network) / UWB(Ultra Wide Band)용 안테나 설계 및 제작)

  • Hong, Yong-Pyo;Kang, Sung-Woon;Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.489-495
    • /
    • 2018
  • In this paper, we designed and fabricated WLAN / UWB communication antennas operating at 3.3 [GHz] and 5 [GHz] bands in order to effectively use the high-speed communication network system that improved antenna miniaturization, gain and radiation pattern. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. Simulation results show that the return loss is -14.053 [dB] at 3.3 [GHz] and -13.118 [dB] at 5 [GHz]. The gain showed a value of 2.479 [dBi] at 3.3 [GHz] and a value of 3.317 [dBi] at 5 [GHz]. After optimizing it with the CST Microwave Studio 2014 program, which can be 3D-designed, Based on these results, we investigated the performance of antennas by measuring their characteristics. In recent years, WLAN, which is a variety of wireless technologies that are continuously developing, and UWB, which is a communication technology which is increasing in frequency band due to an increase in demand of the technology users, is used for a high speed wireless communication system. Communication seems to be possible.

Design and Fabrication of Dual Linear Polarization Patch Antenna with Aperture Coupled Feeding Structure (개구 결합 급전 구조를 갖는 이중 선형편파 패치 안테나의 설계 및 제작)

  • Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1015-1022
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) antenna with aperture coupled feeding structure for private network. The proposed antenna has general aperture coupled structure and design two port between top and bottom layer to obtain the enhanced isolation. Also, The size of each substrate(top and bottom layer) is 34.0 mm(W)×34.0 mm(L), which is designed on the FR-4 substrate which thickness (h) is 1.0 mm, and the dielectric constant is 4.4. Also, the size of patch antenna is 12.70 mm(W2)×14.60 mm(L3), and it is located on the top layer. The size of feeding line is 24.0 mm(W2)×1.6 mm(L3), and is located at the bottom layer Also, rectangular slot is located on the ground plane between top layer and bottom layer. From the fabrication and measurement results, bandwidths of 300 MHz (4.52 to 4.82 GHz) for feeding port 1, and 170 MHz (4.65 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -30 dB. Also, cross polarization isolation between each feeding port obtained