• Title/Summary/Keyword: slot-by-slot

Search Result 1,389, Processing Time 0.032 seconds

A Study on Improvement of Ventilation Efficiency of Multi-Stage Slot Hood (외부식 다단형 슬로트 후드의 효율 향상에 관한 연구)

  • Kim, Hyun Seok;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.2
    • /
    • pp.204-212
    • /
    • 1993
  • This study was conducted to evaluate ventilation efficiency of 4-stage slot hood by variation of slot width, flow rate, hood size and baffle size. The slot velocity, control velocity and plenum velocity were related to slot width and the distance between source of contamination and hood. The results obtained from laboratory experiment for local exhaust ventilation systems were as follows ; 1. When slot widths were constant(equally changed) and the velocity was 6-10 m/s, the slot velocity from 1st slot to 4th slot gradually decreased. As the slot width-to-slot length ratio(WLR) decreased, the slot velocity of each stage increased. But if WLR value was less than 0.04, the slot velocity decreased. 2. When slot velocity exceeded 10 m/s with constant slot widths, the slot velocity of each stage was uniform. 3. When the slot velocity was uniform within 10 m/s and the first slot width was 14-20 mm, the slot width ratio between 1st slot and each of three other slots were 1, 1.25, 1.5 and 3.0, respectively. 4. The slot and plenum velocity were uniform when exhaust flow rate changed from 14 to $19m^3/min$ and there were no hood splitter vanes. 5. When the slot velocity at each stage was uniform, the control velocity at site 30 cm away from hood No.2 increased from 0.15-0.30 to 0.25-0.45 m/s and the control distance from 20 to 30 cm(about 1.5 times).

  • PDF

Effect of Pole to Slot Ratio on Cogging Torque and EMF Waveform in Permanent Magnet Motor with Fractional-Slot (분수슬롯을 가진 영구자석 전동기에서 극당 슬롯 비율이 코깅토크와 역기전력에 미치는 영향)

  • Lee, Kab-Jae;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.454-459
    • /
    • 2003
  • Conventional integral-slot design in permanent magnet(PM) motor tends to have a high cogging torque and large end turns, which contribute to copper losses. The fractional-slot design is effective compared to integral-slot design in the cogging torque and electromotive force(EMF) waveform. The effectiveness of fractional slot can be maximized by selecting optimal pole to slot ratio. This paper presents the effect of pole to slot ratio on the cogging torque and EMF waveform in the PM motor with fractional-slot. The effectiveness of the proposed designs has been confirmed by comparing waveform of EMF. cogging torque and torque ripple between conventional and new models.

A Study on Balanced Airport Slot Allocation Model Applying AIP Model -Focused on Incheon International Airport- (AIP 모델을 응용한 균형적 공항 슬롯 배정 모델에 관한 연구 -인천국제공항 사례 연구-)

  • Park, Hak-Soon;Kim, Kee-Woong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • This paper presents a new airport slot allocation model that uses AIP model to balance the use of airport slots within existing capacity based on the limitation of capacity expansion of airport slots. This new model is called a 'balanced airport slot allocation model', which integrates the airport facility usage system, which is applied independently without linkage, with the airport slot allocation system, introducing the market logical characteristic of 'administered incentive pricing. In this paper, we propose a new proposal to dramatically change the airport slot allocation system in the current situation where the expansion of facilities is limited in the urgent problem of the airport slot shortage, and it is necessary to balance the airport slot allocation. Airline paying for the use of an airport slot can determine the slot of the desired time slot based on the costs incurred by differentiating in the new airport slot allocation model. This is a system that allows the airlines that are willing to pay a lot of money in the market to use preferred airport slots.

Hydrualic Model Test for Siphon Spillway Capable of Controlling Discharge (유량조절이 가능한 사이펀 여수로 수리모형실험)

  • Jung, Jae-Sang;Jang, Eun-Cheol;Lee, Changhoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.43-47
    • /
    • 2019
  • In this study, capability of an air slot in a siphon spillway for controlling outflow discharge is investigated through hydraulic experiments. Arc and rectangular shapes of air slot are considered and the open area of air slot can be varied. Complex air-regulated flow occurs inside the the siphon spillway when the air slot is installed on it. The same discharge is measured at the same water level inside the reservoir when the water level rises or falls. Nondimensional discharge through the siphon spillway increases slowly as nondimensional open area of the air slot increases. The hydraulic experiments show that the control of outflow discharge of siphon spillway is possible by controlling the open area of the air slot.

  • PDF

CFD based simulations of flutter characteristics of ideal thin plates with and without central slot

  • Zhu, Zhi-Wen;Chen, Zheng-Qing;Gu, Ming
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-19
    • /
    • 2009
  • In this paper, the airflow around an ideal thin plate (hereafter referred to as ITP) with various ratios of central slot is simulated by using the finite-difference-method (FDM)-based Arbitrary-Lagrangian-Eulerian descriptions for the rigid oscillating body. The numerical procedure employs the second-order projection scheme to decouple the governing equations, and the multigrid algorithm with three levels to improve the computational efficiency in evaluating of the pressure equation. The present CFD method is validated through comparing the computed flutter derivatives of the ITP without slot to Theodorsen analytical solutions. Then, the unsteady aerodynamics of the ITP with and without central slot is investigated. It is found that even a smaller ratio of central slot of the ITP has notable effects on pressure distributions of the downstream section, and the pressure distributions on the downstream section will further be significantly affected by the slot ratio and the reduced wind speeds. Continuous increase of $A_2^*$ with the increase of central slot may be the key feature of the slotted ITP. Finally, flutter analyses based on the flutter derivatives of the slotted ITP are performed, and moreover, flutter instabilities of a scaled sectional model of a twin-deck bridge with various ratios of deck slot are investigated. The results confirm that the central slot is effective to improve bridge flutter stabilities, and that the flutter critical wind speeds increase with the increase of slot ratio.

Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application (성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석)

  • Lee, C.W.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.

Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior (개구부의 기하학적 형상이 구획실의 연료-공기 혼합특성 및 백드래프트 거동에 미치는 영향)

  • Ha, Suim;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • Mixing characteristics and backdraft dynamics were investigated using large eddy simulation for compartments initially filled with methane fuel. Four different opening geometries, i.e. conventional door opening case (Door) and the cases where horizontal door was implemented on the upper ($Slot_U$), middle ($Slot_M$) and lower part ($Slot_L$) of side wall, were considered in the simulations. For cases without ignition, the amounts of inflow oxygen and outflow fuel from the compartment opening were, from largest to smallest, Door > $Slot_U$ ~ $Slot_M$ > $Slot_L$. However, the fuel and oxygen were the best mixed for the $Slot_U$ case while the fuel and oxygen were not well mixed and in relatively separated two layers for the $Slot_L$ case. The global equivalence ratio defined by the amounts of fuel and oxygen in the compartment was not correlated reasonably with the peak pressure of backdraft. The peak pressure during backdraft was the highest for the $Slot_U$ case, a well mixed condition of fuel and air, and backdraft was not found for the $Slot_L$ where the pressure rise was not so high due to the mixing status. The peak pressures for the Door and $Slot_M$ cases were in between Door and $Slot_L$ cases. The peak pressure during backdraft was well correlated with the total amount of heat release until the instance of backdraft occurrence.

Compact Dual-Band Half-Ring-Shaped Bent Slot Antenna for WLAN and WiMAX Applications

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2017
  • A compact dual-band half-ring-shaped (HRS) bent slot antenna fed by a coplanar waveguide for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is presented. The antenna consists of two HRS slots with different lengths and widths. The two HRS slots are connected through an arc-shaped slit, and the upper HRS slot is bent in order to reduce the size of the antenna. The optimized dual-band HRS bent slot antenna operating in the 2.45 GHz WLAN and 3.5 GHz WiMAX bands is fabricated on an FR4 substrate with dimensions of 30 mm by 30 mm. The slot length of the proposed dual-band slot antenna is reduced by 35%, compared to a conventional dual-band rectangular slot antenna. Experimental results show that the proposed antenna operates in the frequency bands of 2.40-2.49 GHz and 3.39-3.72 GHz for a voltage standing wave ratio of less than 2, and measured gain is larger than 1.4 dBi in the two bands.

The effective of Radiation Pattern on Two Shape of Slot Antenna

  • Chanwattanapong, W.;Anantrasirichai, N.;Wakabayachi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1660-1663
    • /
    • 2003
  • This paper present the characteristics of radiation pattern of microstrip slot antenna on the ground plane fed by microstrip line. It is proposed for resonance frequency at 10 GHz. We will analysis two shape of slot antenna; double L-shape slot antenna and U-shape slot antenna. In this case, we will compare far-field radiation pattern of two shape slot antenna. Far-field radiation pattern of double L-shape slot antenna is bi-directional nevertheless U-shape slot antenna is uni-directional. The microstrip slot antenna is propose to analyze far-field radiation pattern for use in the wireless communication systems

  • PDF

Effect of Slot Opening on the Cogging Torque of Fractional-Slot Concentrated Winding Permanent Magnet Brushless DC Motor

  • Yan, Jianhu;Zhang, Qiongfang;Feng, Yi
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.78-82
    • /
    • 2016
  • Cogging torque will affect the performance of a permanent magnet Brushless DC Motor (BLDCM), thus the reduction of cogging torque is key for BLDCM optimization. In this paper, the phase shifting of cogging torque for a fractional-slot concentrated winding BLDCM is analyzed using the Maxwell tensor method. Moreover, a 9-slot 10-pole concentrated winding BLDCM driven by ideal square waveform is studied with the finite element method (FEM). An effective method to reduce the cogging torque is obtained by adjusting the slot opening. In addition, the influences of different slot openings on back electromotive force (back-EMF), air gap flux density and flux linkage are investigated and experimentally validated using the prototype BLDCM.