• Title/Summary/Keyword: slot scheme

Search Result 222, Processing Time 0.018 seconds

VLSI Design of Interface between MAC and PHY Layers for Adaptive Burst Profiling in BWA System (BWA 시스템에서 적응형 버스트 프로파일링을 위한 MAC과 PHY 계층 간 인터페이스의 VLSI 설계)

  • Song Moon Kyou;Kong Min Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • The range of hardware implementation increases in communication systems as high-speed processing is required for high data rate. In the broadband wireless access (BWA) system based on IEEE standard 802.16 the functions of higher part in the MAC layer to Provide data needed for generating MAC PDU are implemented in software, and the tasks from formatting MAC PDUs by using those data to transmitting the messages in a modem are implemented in hardware. In this paper, the interface hardware for efficient message exchange between MAC and PHY layers in the BWA system is designed. The hardware performs the following functions including those of the transmission convergence(TC) sublayer; (1) formatting TC PDU(Protocol data unit) from/to MAC PDU, (2) Reed-solomon(RS) encoding/decoding, and (3) resolving DL MAP and UL MAP, so that it controls transmission slot and uplink and downlink traffic according to the modulation scheme of burst profile. Also, it provides various control signal for PHY modem. In addition, the truncated binary exponential backoff (TBEB) algorithm is implemented in a subscriber station to avoid collision on contention-based transmission of messages. The VLSI architecture performing all these functions is implemented and verified in VHDL.

Adaptive Power Control Dynamic Range Algorithm in WCDMA Downlink Systems (WCDMA 하향 링크 시스템에서의 적응적 PCDR 알고리즘)

  • Jung, Soo-Sung;Park, Hyung-Won;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1048-1057
    • /
    • 2004
  • WCDMA system is 3rd generation wireless mobile system specified by 3GPP. In WCDMA downlink, two power control schemes are operated. One is inner loop power control operated m every slot Another is outer loop power control based on one frame time. Base staion (BS) can estimate proper transmission power by these two power control schemes. However, because each MS's transmission power makes a severe effect on BS's performance, BS cannot give excessive transmission power to the speclfic user 3GPP defined Power Control Dynamic Range (PCDR) to guarantee proper BS's performance. In this paper, we propose Adaptive PCDR algorithm. By APCDR algorithm, Radio Network Controller (RNC) can estimate each MS's current state using received signal to interference ratio (SIR) APCDR algorithm changes MS's maximum code channel power based on frame. By proposed scheme, each MS can reduce wireless channel effect and endure outages in cell edge. Therefore, each MS can obtain better QoS. Simulation result indicate that APCDR algorithm show more attractive output than fixed PCDR algorithm.