• Title/Summary/Keyword: slot allocation

Search Result 132, Processing Time 0.069 seconds

Resource Allocation schemes for the asymmetric multimedia services (비대칭 멀티미디어 서비스를 위한 자원 할당 방법)

  • 이종찬;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.736-745
    • /
    • 2003
  • Resource allocation methods are proposed to address the problem of how flexibly allocate limited wireless resource to high bandwidth demanded realtime class with certain QoS guarantees in CDMA/TDD systems. In this method, A reserved access scheme is used for allocating the resource to realtime and non-realtime class respectively. We also propose a slot allocation algorithm for the CDMA/TDD system, which can prevent the performance degradation due to the interlink interference in each cell. Our framework is able to guarantee QoS continuity of realtime class and carry the maximum number of non-realtime subscriber. System performance of proposed method is evaluated by considering transmission delay, channel utilization and data loss, assuming a practical multi-cell environment and a multimedia service model. Our simulation results demonstrate the significant performance improvement.

MAC Protocol using Dynamic Slot-Time for Underwater Acoustic Sensor Network (수중 센서 네트워크를 위한 가변 슬롯시간 기반의 MAC프로토콜)

  • Lee, Dong-Won;Kim, Sun-Myeng;Yang, Youn-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.344-347
    • /
    • 2011
  • Unlike a terrestrial wireless sensor network which uses radio waves, UWASN(Underwater Acoustic Sensor Network) relies on acoustic waves. There are lots of ongoing researches for long latency and limited bandwidth of underwater sensor network by using acoustic wave. Packets transferred by node often colide in underwater sensor network due to long latency. To solve this kind of problem, in general, Back-off scheme which is used in wireless network is used. However, fixed Slot-time according to node allocation generates useless time delay, and this lowers network performance. In this thesis, active setting technique of Slot-time is proposed, and applied for already studied MAC protocol. At the conclusion, it was proved that the MAC protocol using the proposed scheme has better performance than existing MAC protocol as a result comparison.

  • PDF

A Weight based GTS Allocation Scheme for Fair Queuing in IEEE 802.15.4 LR-WPAN (IEEE 802.15.4 LR-WPAN 환경에서 공정 큐잉을 위한 가중치 기반 GTS 할당 기법)

  • Lee, Kyoung-Hwa;Lee, Hyeop-Geon;Shin, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.19-28
    • /
    • 2010
  • The GTS(Guaranteed Time Slot) of the IEEE 802.15.4 standard, which is the contention free access mechanism, is used for low-latency applications or applications requiring specific data bandwidth. But it has some problems such as delay of service due to FIFS(First In First Service) scheduling. In this paper, we proposes a weight based GTS allocation scheme for fair queuing in IEEE 802.15.4 LR-WPAN. The proposed scheme uses a weight that formed by how much more weight we give to the recent history than to the older history for a new GTS allocation. This scheme reduces service delay time and also guarantees transmission simultaneously within a limited time. The results of the performance analysis shows that our approach improves the performance as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard.

A Study On The Wireless ATM MAC Protocol Using Mini-slot With Dynamic Bandwidth Allocation Algorithm (동적 대역 할당 알고리즘을 이용한 미니슬롯 기반의 무선 ATM 매체 접속 제어 프로토콜에 관한 연구)

  • Jeong, Geon-Jin;Lee, Seong-Chang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.17-23
    • /
    • 2000
  • Wireless link has high bit error rate compared with wired link and many users share this limited bandwidth. So it needs more powerful error control code and efficient media access control(MAC) to provide multimedia service reliably. In this paper we proposed efficient MAC frame format based on TDMA using mini-slot for request access. The number of mini-slots is variable based on the result of collision in the previous frame. This dynamic allocation of request mini-slots helps resolve the contention situation quickly and avoids the waste of bandwidth that may occur when there are several unneeded request mini-slots. The simulation results are also presented in terms of channel utilization, call blocking probability and cell transmission delay for mixed traffic environment.

  • PDF

DTDMA Procedure design of Tactical Data Link

  • Kim, Jin-Woo;Lee, Woo-Sin;Kim, Hack-Joon;Jin, So-Yeon;Kim, Min-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.43-50
    • /
    • 2019
  • In this paper, we designed a dynamic TDMA scheme for smooth tactical data distribution in TDMA tactical datalinks. Since the existing tactical datalinks use fixed time radio resources, it is impossible to change the resource status according to network conditions during operation. To overcome these limitations, we designed, implemented, and simulated the DTDMA processing and related messages such as initial timeslot allocation, intermediate time slot allocation, time slot return, and timeslot retrieval. As a result, it was shown that the method of effectively allocating and using timeslot resources according to the situation is applicable. Therefore, we will continue research to manage DTDMA communication on tactical data link in the future.

Resource Allocation scheme for WiMedia UWB MAC (WiMedia UWB MAC의 자원할당 방안)

  • Nam, Jungmin;Baek, Seungho;Huh, Jaedoo;Lee, Sungchang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • Wimedia UWB(Ultra-Wideband) platform provides data rates up to 480Mbps in WPAN (Wireless Personal Area Network). Wimedia conformant devices access to the channels through superframe concept for communications. As the channel resource is limited, the optimal channel time required for each device needs to be estimated to share the resource efficiently among the devices. In this paper, we propose a scheme to estimate the required channel time in a super frame to satisfy the QoS of the application on a device. The channel time is estimated from the service rate which is computed from the TSPEC of the application. In the process of the estimation, we take the frame overhead for data transmission as well as the overhead due to the acknowledgement scheme, preamble, and MDSU size into consideration. We also analyze and compare the throughputs for different acknowledgement scheme, preamble, and MDSU size situations. The estimated channel time required for a given service rate is allocated in the unit of MAS(Medium Access Slot).

  • PDF

The Design of STDMA(Self-Organized Time Division Multiple Access) Protocol Simulation Program (항공 감시용 다중접속방식 프로토콜 시뮬레이션 프로그램 설계)

  • Kim, In-Kyu;Ohn, Kyoung-Ryoon;Song, Jae-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.554-558
    • /
    • 2008
  • In this paper, we show that the SIDMA(Self-organized Time Division Multiple Access) protocol using aviation surveillance data link now, designs to the ICAO DO 9816 documentation sequence. This protocol makes use of the VDL(VHF Data Link) Mode 4 and UAT(Universal Access Transceiver) system's MAC(Media Access Control) layer. We make sure of the simulation result and implementation of STDMA protocol program in accompany with the ICAO documentation sequence. This program operates the slot allocation and reservation with report rate when protocol transmits data and calculates slot address.

  • PDF

A New GTS Allocation Scheme Considering Periodic Characteristic of IEEE 802.15.4 Wireless Sensor Network (센서 네트워크의 주기적인 성질을 고려한 IEEE 802.15.4 GTS 할당 방법)

  • Ho Eun Kwon;Sueng Jae Bae;Min Young Chung
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.1215-1218
    • /
    • 2008
  • IEEE 802.15.4 기반의 무선 센서 네트워크는 다양한 종류의 센서들로 구성된다. 이러한 센서들은 각각 다양한 주기들로 중심 노드에게 데이터를 전송하고자 한다. 슈퍼프레임마다의 주기적인 전송을 위해 IEEE 802.15.4에서는 GTS(Guaranteed Time Slot) 메커니즘을 제공한다. 하지만 하나의 센서 네트워크에서 슈퍼프레임 길이는 모두 동일하기 때문에 이보다 긴 주기를 갖는 센서들은 GTS를 할당받고도 데이터를 전송하지 않는 경우가 발생할 수 있다. 때문에 IEEE 802.15.4의 GTS 메커니즘에서는 낮은 사용 효율의 문제가 발생한다. 본 논문은 이러한 문제를 보완하고자 주기적 GTS 할당 방법(PGTS: Periodic Guaranteed Time Slot)을 제안한다. 주기적 GTS 할당 방법에서는 단말들이 GTS 요청 시 자신의 데이터 전송 주기를 PAN 코디네이터에게 보고하고, PAN 코디네이터는 이를 고려하여 단말의 주기에 따른 슈퍼프레임에서만 GTS 구간을 할당한다. 이를 통해 주기적 GTS 할당 방법은 기존 GTS 할당 방법보다 대역의 낭비를 줄여 GTS를 효율적으로 사용가능하도록 하고 더 많은 수의 단말들에게 GTS를 배정할 수 있게 한다. 본 논문에서는 시뮬레이션 결과를 통해 주기적 GTS 할당 방법이 IEEE 802.15.4의 GTS 할당 방법보다 효율적이며 더 많은 수의 단말에게 GTS를 할당할 수 있음을 확인하였다.

A Burn-in Test System with Dynamic Bone Allocation (동적 존 할당이 가능한 번인 시험 시스템)

  • Oh, Sam-Kweon;Shin, Joong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • Bum-in test is one for eliminating semiconductor devices that are subject to early failures and other operational problems; it is usually carried out on the devices by imposing severe test conditions such as elevated voltages, temperatures, and time. In order for such a test to be performed, each burn-in board having devices to be tested, needs to be inserted into a corresponding slot. A set of such slots is called a zone. The slots comprising a zone can only have the burn-in boards with the devices of the same type. In order to test many different types of semiconductor devices, it is desirable to build a burn-in test system to have as many zones as possible. A zone controller controlling a zone, is a device that performs a burn-in test and collects test results. In case of existing systems, each zone controller takes care of a zone that consists of a fixed number of slots. Since a zone controller is, in most cases, embedded into a workstation that controls the overall testing process, adding new zone controllers is restricted by the spaces for them. As a way to solve or alleviate these problems, a dynamic zone system in which the number of slots in a zone can be dynamically allocated, is presented. This system maximizes the efficiency of system utilization, by altering the number of slots and hence minimizing the idle slots of a zone. In addition, all the test operations being performed must be aborted for maintenance in existing systems. In dynamic zone systems, however, a separate and independent maintenance is allowed for each slot, as long as the main power supply system has no problem.