• Title/Summary/Keyword: sloshing water

Search Result 69, Processing Time 0.029 seconds

A Numerical Study on the Coupled Dynamics of Ship and Flooding Water (선박 운동과 내부 유동의 연성 운동에 관한 수치해석 연구)

  • Hong, Sa-Young;Kim, Jin;Park, Il-Ryong;Choi, Seok-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.631-637
    • /
    • 2006
  • This paper presents a numerical method to solve the ship motion coupled with internal fluid flow. Physically the internal fluid motion is coupled with the ship motion. Hitherto the previous numerical results of the coupled motion predict only the general tendency with experiments. The main reason of inaccuracy is that the coupled dynamics of ship motion and internal water motion is not accurately accounted. In this study CFD technique based on VOF is employed for the accurate analysis of flooding water motion. Some cases of the 24th ITTC stability committee's benchmark.study for tanker with internal fluid are analyzed by coupling the ship motion and sloshing dynamics. The calculated ship motion is compared with the experimental result to validate the coupled scheme and is in agreement with the experimental result.

Water-Sloshing-Based Electricity Generating Device via Charge Separation and Accumulation (전하 분리와 축적을 통한 물의 슬로싱 현상 기반 전기에너지 발생 장치)

  • Cha, Kyunghwan;Heo, Deokjae;Lee, Sangmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.98-101
    • /
    • 2022
  • Liquid-based Triboelectric nanogenerator (L-TENG) is one of the alternatives to solid-based Triboelectric nanogenerator (S-TENG) because of the absence of surface damage which can decrease the durability of the generator. However, the L-TENG also has an obvious drawback of significantly lower output than that of S-TENG. This article produces water-sloshing-based electricity generating device (W-ED) with a new design of L-TENG that improves electrical output in portable form. The dual-electrode system, consisting of closed-loop circuit and inner electrode which enables water to contact directly in the bottle, can generate the open-circuit voltage and the short-circuit current of up to 348 V and 5.1 mA, respectively. By investigating the motion of water for each frequency, we propose that W-ED is suitable device for a variety of human motions. We expect that W-ED can be applied in small electrical devices or sensors in daily-use items.

Parametric study on dynamic behavior of rectangular concrete storage tanks

  • Yazdanian, Mohsen;Fu, Feng
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.189-206
    • /
    • 2017
  • Tanks are used to store a wide variety of liquids such as oil, gasoline and water. It is reported that, a large number of tanks have been damaged during severe earthquakes. Therefore, understanding their behavior under earthquake is an important subject for structural engineers. In this paper, a comprehensive study is presented on dynamic response of tanks. A parametric study has been completed on the rectangular storage tanks with aid of finite element method (FEM). Various parameters are investigated, such as; liquid height, density and earthquake with different peak ground acceleration (PGA). When investigating these parameters, modal and time history method is used. Six different earthquake records are used for time history analysis. The analysis results show that when the PGA increases by 10.7 times, the maximum displacements, stress, sloshing and base shear increase by 11.4, 22.6, 5.46 and 17.8 times, respectively and when the liquid height increases by two times, the absolute maximum values of stress, displacements, base shear and sloshing increase 1.65, 2.04, 2.05 and 1.34. Furthermore, values of sloshing increase with decrease in density.

Resonant Frequencies in Rectangular Liquid Tanks with an Internal Body (내부물체를 갖는 사각형수조내 유체의 고유진동수)

  • 전영선;윤정방
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • Sloshing frequencies of the fluid in rectangular tanks with a bottom-mounted rectangular block are determined by linear water wave theory. Velocity potential is decomposed into those for the wall-induced waves, and the reflected, transmitted, and scattered waves by the block. The reflection and transmission coefficients are determined using the continuity conditions of mass flux and energy flux on the common vertical boundaries of the fluid regions, and the boundary conditions on the both sides of the block. The analysis results indicate that the sloshing frequencies reduce, as the block becomes tall and vade and as the block moves toward the center. The variations of the sloshing frequencies due to the block are found to be more sensitive in broad thanks than is tall tanks.

  • PDF

Concept Design of a Parallel-type Tuned Mass Damper - Tuned Sloshing Damper System for Building Motion Control in Wind

  • Lee, Chien-Shen;Love, J. Shayne;Haskett, Trevor C.;Robinson, Jamieson K.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.93-97
    • /
    • 2021
  • Supplementary damping systems, such as tuned mass dampers (TMDs) and tuned sloshing dampers (TSDs) - also known as tuned liquid dampers (TLDs) - have been successfully employed to reduce building motion during wind events. A design of a damping system consisting of a TMD and two TSDs performing in unison has been developed for a tall building in Taiwan to reduce wind-induced motion. The architecturally exposed TMD will also be featured as a tourist attraction. The dual-purpose TSD tanks will perform as fire suppression water storage tanks. Linearized equivalent mechanical TSD and TMD models are coupled to the structure to simulate the multi-degree of freedom system response. Frequency response curves for the structure with and without the damping system are created to evaluate the performance of the damping system. The performance of the combined TMD-TSD system is evaluated against a conventional TMD system by computing the effective damping produced by each system. The proposed system is found to have superior performance in acceleration reduction. The combined TMD-TSD system is an effective and affordable means to reduce the wind-induced resonant response of tall buildings.

An Experimental Study on Sloshing Impact Pressures with Two Identically Shaped Rectangular 2-Dimensional Model Tanks with Different Sizes (동일 형상의 서로 다른 크기를 가지는 2차원 4각 탱크의 슬로싱 충격 압력에 관한 실험적 연구)

  • Hwang, Yoon-Sik;Jung, Jun-Hyung;Kim, Dae-Woong;Ryu, Min-Cheol
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.16-28
    • /
    • 2008
  • Recent growth in LNG market has led dramatic increase in new buildings of LNG carriers and several large LNG carriers are now being constructed by shipbuilders in Korea. Large size LNG carriers has brought keen concerns on the issue regarding safety of cargo containment systems and sloshing impact load which is the critical source of loads on the membrane type containment systems. Up to the present, the best way to properly assess sloshing impact pressures on surrounding walls is a model testing for wide-ranged excitation conditions. These impact pressures obtained from model tests sometimes need to be interpreted to full-scale values and in the near future this necessity will be strengthened for more rigorous and direct safety assessment of LNG cargo containment system. In this paper, a basic experimental study is carried out with two different sized, 2D identically shaped model tanks excited in simple translational motions. Relationships between pressures of different sized model tanks are investigated Model tanks are filled with fresh water and equipped with same sized pressure sensors.

  • PDF

Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect (내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석)

  • Hong, Seokjin;Kim, Donghyun;Kang, Sinwook;Kang, Keumseok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.461-467
    • /
    • 2016
  • In order to install the floating transport type wind-turbine foundation, water pumping is used to sink the foundation. During this process, its mass and center of gravity, and buoyancy center become continuously changed so that the dynamic stability of the floating foundation become unstable. Dynamic stability analysis of the floating foundation is a complex problem since it should take into account not only the environmental wave, wind, and current loads but also its weight change effect simultaneously considering six-degree-of-freedom motion. In this study, advanced numerical method based on the coupled computational fluid dynamics (CFD) and multi-body dynamics (MBD) approach has been applied to the dynamic stability analysis of the floating foundation. The sloshing effect of foundation internal water is also considered and the floating dynamic characteristics are numerically investigated in detail.

Comparative Study on Sloshing Impact Flows between PIV and CFD (슬로싱 충격현상 해석을 위한 모형실험과 수치해석 적용에 관한 비교 연구: PIV vs. CFD)

  • Yang, Kyung-Kyu;Kim, Jieung;Kim, Sang-Yeob;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.154-162
    • /
    • 2015
  • In this study, experimental and numerical methods were applied to observe sloshing impact phenomena. A two-dimensional rectangular tank filled with water and air was considered with a specific excitation condition that induced a hydrodynamic impact without an air pocket at the top corner of the tank. High-speed cameras and a pressure measurement system were synchronized, and a particle image velocimetry (PIV) technique was applied to measure the velocity field and corresponding pressure. The experimental condition was implemented in a numerical computation to solve incompressible two-phase flows using a Cartesian-grid method. The discretized solution was obtained using the finite difference and constraint-interpolation-profile (CIP) methods, which adopt a fractional step scheme for coupling the pressure and velocity. The tangent of the hyperbola for interface capturing (THINC) scheme was used with the weighed line interface calculation (WLIC) method to capture the interface between the air and water. The calculated impact pressures and velocity fields were compared with experimental data, and the relationship between the local velocity and pressure was investigated based on the computational results.

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향)

  • Park, Gun;Yoon, Hyungchul;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.126-134
    • /
    • 2020
  • In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.