• Title/Summary/Keyword: slopes

Search Result 2,210, Processing Time 0.028 seconds

Performance Factors for Delaying Slope Failure through Hydraulic Experiments of Dam Overtopping (댐 월류 수리실험을 통한 사면붕괴지연 성능인자 도출)

  • Sung Woo, Lee;Dong Hyun Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • Most reservoirs in South Korea are earthen dams, mainly because they are cost-effective and easy to construct. However, earthen dams are highly vulnerable to seepage and overtopping, making them prone to sudden failure during excessive flooding. Such sudden failures can lead to a rapid increase in flood discharge, causing significant damage to downstream rivers and inhabited areas. This study investigates the effect of riprap placement on the slopes of earthen dams in delaying dam failure. Delaying the failure time is crucial as it allows more time for evacuation, significantly reducing potential casualties, which is essential from a disaster response perspective. Hydraulic experiments were conducted in a straight channel, using two different sizes of riprap for protection. Unlike previous studies, these experiments were performed under unsteady flow conditions to reflect the impact of rising water levels inside the dam. The target dam for the study was a cofferdam installed in a diversion tunnel. Experimental results indicated that the presence of riprap protection effectively prevented slope failure under the tested conditions. Without riprap protection, increasing the size of the riprap delayed the failure time. This delay can reduce peak discharge, mitigating damage downstream of the dam. Furthermore, these findings can serve as critical reference material for establishing emergency action plans (EAP) for reservoir failure.

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.

Analysis of the Relationship between Melon Fruit Growth and Net Quality Using Computer Vision and Fruit Modeling (컴퓨터 비전과 과실 모델링을 이용한 멜론 과실 생장과 네트 품질의 관계 분석)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.

Integrity evaluation of rock bolt installed in rock slope using sound waves (음파를 이용한 암반사면에 설치된 록볼트의 건전도 평가)

  • Jong-Sub Lee;Jung-Doung Yu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.385-401
    • /
    • 2024
  • Rock bolts play a crucial role in reinforcing rock slopes. However, a poorly grouted rock bolt occasionally occurs, potentially compromising the stability of a rock slope. The purpose of this study is to evaluate the integrity of a rock bolt using sound waves. In experiments, a total of five rock bolts are prepared, one of which is intact while the other four are poorly grouted. The grouted ratios of four poorly grouted rock bolts are 80%, 70%, 60%, and 50%, respectively, and nongrouted sections are introduced at the upper part of the rock bolts. Rock bolts are installed in a concrete block to simulate rock bolts embedded in a rock slope. Sound waves are generated by impacting the head of the rock bolt and measured using the built-in microphone of a smartphone. Measured sound waves are analyzed in frequency domain through Fourier transform. Results show that the predominant frequency of sound waves decreases as the grouted ratio decreases. This study suggests that the predominant frequency of sound waves can be an effective indicator for evaluating the integrity of the rock bolt.

Infiltration and Stability Analysis Using Double Modal Water Retention Curves for Unsaturated Slopes in Pohang (이중모드 함수특성곡선을 이용한 포항 산사태에 대한 불포화 비탈면의 침투 및 안정해석)

  • Oh, Seboong;Jang, Junhyuk;Yoon, Seokyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.695-705
    • /
    • 2024
  • As a result of Typhoon Hinnamnoh, several slope failures occurred in the Pohang region, it is necessary to perform infiltration and slope stability analyses due to the actual rainfall. In the failed sites, samples were collected, and the hydro-mechanical properties of unsaturated soil were examined. Modeling the actual behavior using a single-mode function characteristic curve was found to be inadequate, leading to the adoption of a dual-mode function characteristic curve. The dual-mode function showed better agreement with the water retention test data. We calculated the unsaturated hydraulic conductivity for single and dual modes and performed rainfall-induced infiltration analysis. The variations in saturation and pore water pressure were calculated due to rainfall for three landslide-prone areas, Stability analysis based on effective stress of unsaturated soil was conducted, and safety factors were computed over time steps. The dual-mode model successfully reproduced landslides triggered by Typhoon Hinnamnoh, while the single-mode model exhibited a minimum safety factor of 1.2-1.3, making slope failure unpredictable. The dual-mode model accurately predicted instability in the slope by appropriately accounting for pore water pressure variations during Typhoon.

Assessing Landslide Risk in Relation to Rainfall Frequency and Duration under the SSP5-8.5 Climate Change Scenario (SSP5-8.5 기후변화 시나리오를 적용하여 강우재현빈도-강우지속시간에 따른 토사재해 위험도 변화 분석)

  • Man-Il Kim;Jang-Gyeong Kim;Young-Douk Joung;Kyeong-Su Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.459-471
    • /
    • 2024
  • Landslide risk is influenced by internal factors such as terrain, geology, soil composition, and forest cover, and external factors such as rainfall and seismic activity. In particular, changes in rainfall patterns due to climate change and changes in terrain due to urban sprawl result in increased landslide risk, both directly and indirectly. This study analyzes internal factors that influence landslide risk using existing spatial data and examines changes in rainfall under the SSP5-8.5 climate change scenario. Rainfall intensity was evaluated across different frequencies and durations, and the landslide risk was assessed by applying rainfall infiltration models to mountain slopes. The analysis reveals that with increasing rainfall duration (1, 6, 12, 18, and 24 h) for an event with a recurrence interval of 10 yr rainfall intensity decreases. However, for shorter rainfall durations (1 h), the intensity increases with the event frequency (10, 20, 50, and 100 yr). Infiltration analysis further shows that with prolonged rainfall, the proportion of areas with a safety factor of 1.3 or higher decreases, thereby raising the landslide risk.

The Characteristics of Spatial-temporal Distribution of Cultural Heritage and the Natural Environment in Shandong Province, China - Focused on Cultural Properties Protection Units - (중국 산둥성(山東省) 문화유산의 자연환경과 시·공간적 특성 - 문화재 보호 단위를 대상으로 -)

  • WEI, GUANYU;Han, Gab-Soo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.20-32
    • /
    • 2024
  • The purpose of this study was to divide cultural assets distributed in Shandong Province, China into five periods and identify the spatial distribution of each cultural asset type and its relationship with the natural environment, such as elevation, slope, and water system. As a result of the study, cultural properties before the Jin dynasty had a high distribution ratio of urban relics such as villages and tombs, and in Jin·Han~Su·Tang dynasty, tombs, ruins, stone caves, and stone carvings. In the Song and Yuan dynasties, there were many cultural properties such as relics, architectural and landscape cultural properties, and in the Ming and Qing dynasties, there were many cultural properties such as buildings, and they were more spatially distributed and distributed. After the Qing Dynasty, commemorative sites, political and defense-related buildings were distributed throughout Shandong, and many cultural assets were located in coastal cities on the east side of Shandong Province. It was found that the types of cultural assets were influenced not only by the social environment of each era but also by the natural environment. Except for cultural assets related to religion, such as grottoes and stone carvings, most cultural assets were located at low elevations and low slopes, and cultural assets were often distributed within 5km of water systems.

Comparison of Soil Profile Development Index of the Residuum Soils Derived from Conglomerate (역암지대(礫岩地帶) 잔적토양(殘積土壤)의 토양단면발달지수(土壤斷面發達指數) 비교(比較))

  • Kim, Jung-Kon;Jung, Yeun-Tae;Son, Il-Soo;Yoon, El-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.99-105
    • /
    • 1986
  • This study was carried out to compare the soil profile development indices of Sinjeong series according to the distribution areas in Yeongnam district. The results obtained were as follows; 1. The soils studied were belong to fine loamy family of hilly residual soils derived from conglomerate. These soils were well drained and dominantly had 30-60% slopes, and used for forest. 2. The surfaces were typified by brownish red (5YR) or brownish yellow (10YR) loam, subsoils were clay loam of reddish brown (5YR) or reddish yellow (7.5YR) and the substrata were in dark reddish brown (5YR) or pink (7.5YR) sandy loam. 3. The indices of horizon development of the soils studied were from 0.18 to 0.38 and the index in illuvial horizons with clay films were over 0.36, that were higher than the others. The profile development indices were similar to each other ranging from 30.18 to 35.93. 4. Positive correlations were observed among horizon development indices and normalized values of structure, texture and consistences, but the relationship between profile development indices and consistences were not the same. 5. The amount of clay minerals formed in the soil horizons per 100g of parent materials were 1.1-1.6g and the rates of the clay leached were around 4.4-5.9%. 6. The sphericity and roundness of the gravels contained in the soils studied were 0.741 and 0.715, respectively. These similarity of "well rounded" gravels certify that the parent rocks were formed under similar environments.

  • PDF

Parametric and Non-parametric Trend Analysis of Groundwater Data Obtained from National Groundwater Monitoring Stations (국가 지하수관측소 지하수위, 전기전도도 및 수온자료에 대한 모수적 및 비모수적 변동 경향성 분석)

  • Lee, Jin-Yong;Yi, Myeong-Jae;Lee, Jae-Myeong;Ahn, Kyoung-Hwan;Won, Jong-Ho;Moon, Sang-Ho;Cho, Min-Joe
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.56-67
    • /
    • 2006
  • Trends of variation in groundwater levels, electrical conductivities and water temperatures obtained from the national groundwater monitoring stations (95 shallow and 169 deep wells) of Korea were evaluated. For the analysis, both parametric (linear regression) and non-parametric (Mann-Kendall test, Sen's test) methods were adopted. Results of linear regression analysis indicated that about 50% of the monitoring wells showed increasing trends of groundwater levels, electrical conductivities, and water temperatures and the others showed decreasing trends. However, the non-parametric analyses with monthly median values revealed that $14.8{\sim}20.0%$ of water levels were decreased, $24.2{\sim}36.9%$ of electrical conductivities were increased, and $27.4{\sim}32.5%$ of water temperatures were increased at a confidence level of 99%. Highly proportions of increasing or decreasing trends were unexpected and they resulted from the relatively short term of data collection (maximum 6 years). Meanwhile, the investigation of groundwater around the national groundwater monitoring stations showed that the decreasing or increasing trends of water levels, electrical conductivities, themselves, didn't indicate directly groundwater hazards such as groundwater depletion or groundwater contamination. Both the values and variation rates (slopes) of water level, electrical conductivity and temperature in the longer period are considered simultaneously. This study is the first comprehensive work in analyzing trends of groundwater data obtained from the national groundwater monitoring stations. Based on this study, the periodical and regular analysis of groundwater data is essentially required to grasp the overall variational trend of groundwater resources in the country.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF