• Title/Summary/Keyword: slope variation

Search Result 551, Processing Time 0.027 seconds

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

A Model Study on the Variation of Apparent Resistivity along with Electric Resistivity Change of Host Rock (모암(母岩)의 전기비저항(電氣比抵抗) 변화(變化)에 따른 외견비저항(外見比抵抗)의 변화양상(變化樣相)에 관(關)한 모형연구(模型硏究))

  • Min, Kyung Duck;Jun, Myoung Soon
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.159-166
    • /
    • 1980
  • A model study was conducted for the investigation of apparent resistivity variation along with electric resistivity variation of host rock and dip variation of bed. Experiments were carried out for the cases of horizontal and dipping beds in a water tank by using Wenner and Schlumberger arrays and by changing salinity of water. The ratios of resistivity values of the bed to that of brine were 1 : 10, 1 : 50, 1 : 100 and 1 : 500. Natural coally-shale of $55cm{\times}35cm{\times}3.5cm$ was used as a bed for experimental model, and brine as a host rock. Equi-resistivity curves and characteristic curves were obtained for each case of the experiment. The equi-resistivity curve was drawn both on the cross section parallel to strike of bed and longitudinal section perpendicular to it. The characteristic curve was drawn on the cross section. In the case of dipping bed of different dips, the curves are parallel to the boundary of the bed in the upper part of the bed, and are inclined to the opposite direction with the same angle of the dip of bed in the lower part. We can deduce, from the equi-resistivity curves, the location, shape and dip of the bed. It is shown in the characteristic curves that when the ratio of resistivity value of bed to that of host rock increases, the slope of curves becomes steeper, location of low-resistivity zone lower, and the width of it narrower. The slope of curves also becomes steeper when dip of bed increases. We can deduce, from the characteristic curves, the ratio of resistivity values between adjacent beds. It was found out from the experiments that electric resistivity method could be applicable to prospecting for underground geology with an electric resistivity contrast of 1 : 10. This fact strongly suggests that distinction of coal from coally-shale could be possible in a certain field condition.

  • PDF

Study on Applicability of Slope Types to Permission Standard for Forestland Use Conversion (산지의 사면유형을 고려한 산지전용허가기준에 관한 연구)

  • CHOI, Jung-Sun;KWAK, Doo-Ahn;KWON, Soon-Duck;BAEK, Seung-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.145-157
    • /
    • 2018
  • Mountainous areas are 64% in Korea and are allowed to be used by the permission standards of the "Mountainous Districts Management Act". In the act, slope and elevation criteria are defined to regulate the use of vulnerable land parcels to disaster. However, the standards cannot represent topographical variation in a land parcel such as terrain relief. Therefore, the applicability of slope type standard as a permission standard was tested using Catena in this study. Based on the theoretical grounds, two slope types were analyzed as 'risky slope' with disaster risk. The slope types of landslides in Namwon City were analyzed that 'risky slope' types were distributed about 57%. This study analyzed the forestland parcels that could be used when applying the current permission standards and the parcels that were already used in Namwon City. The ratio of the 'risky slope' in the parcels was more than 50%. Therefore, it is necessary to prevent the mountain development in 'risky slope' by establishing permission standard related to slope types. In addition, this study suggested the ratio of 'risky slope' in the parcel for the permission standard for forestland use conversion.

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

Coupling Effects in Rainfall-induced Slope Stability Considering Hydro-mechanical Model (강우침투에 의한 비탈면 안정해의 수리-역학적 모델을 이용한 커플링 효과)

  • Kim, Yong-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.5-15
    • /
    • 2015
  • In this study, rainfall-induced slope stability and coupling effect are investigated using hydro-mechanical finite element model. This model is developed by formulating constitutive and coupled balance equations and is verified by comparing the numerical results with field matric suction. The homogeneous soil layer (soil column) and soil slope are modeled by this model, and the results of variation in matric suction, mean effective stress, porosity, displacement, factor of safety are compared with those of staggered analysis. It is found that the vertical and horizontal displacement from coupling analysis considering change in porosity is larger than that of staggered analysis. The displacement and matric suction from coupling analysis by rainfall infiltration can affect slope instability, which shows a progressive failure behavior. The lowest factor of safety is observed under short-term rainfall. This results confirm the fact that coupling analysis is needed to design soil slope under severe rain condition.

An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire (경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구)

  • Kim, Seung-Ryoul;Jang, Yong-Jun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • An experimental study has been conducted to investigate the effect of tunnel slope on critical velocity by using the model funnel of the 1/20 reduced-scale applying the Floods scaling law. the square liquid pool burners were used for methanol, acetone and n-heptane fires. tunnel. Tunnel slopes varied as five different degrees $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$ and $8^{\circ}$. The mass loss rate and the temperatures are measured by a load celt and K-type thermocouples for tunnel slope. Present study results in bigger the critical velocity than the research of Atikinson and Wu using the propane burner. Therefore, when estimating the critical velocity in slope tunnel, the variations of the heat release rate is an important factor. The reason is the ventilation velocity directly affects variation of heat release rate when slope tunnel fire occurred.

Preliminary Study on the Co-relation between the Water Infiltration and the Shallow Slope Failure (지표수 침투와 천부 사면파괴와의 관계에 관한 기초연구)

  • 송원경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.33-44
    • /
    • 1998
  • Preliminary study has been conducted to analyse the co-relation between shallow landslides frequently occurring in rainy seasons and the water infiltration into the slope. The change of stress state due to partial saturation of a soil and hence the reduction of its shear strength have been reviewed. The variation of the safety factor of an infinite planar slope in accordance with various water infiltration scenarios has been estimated by limit equilibrium method to explain the mechanism of shallow slope failure. Numerical analysis under the same condition as those of some models dealt with in the previous method has been carried out by using FLAC, a finite difference program, and the results have been compared with the ones obtained by limit equilibrium method. Both results proved to be identical, which implies the ability of the numerical approach to the problems related to the stability analysis of unsaturated slope with the irregular geometry. Further improvement, however, should be made to apply the present analysis procedure to general slopes since it deals with a simple one.

  • PDF

Community Structure, Diversity, and Vertical Distribution of Archaea Revealed by 16S rRNA Gene Analysis in the Deep Sea Sediment of the Ulleung Basin, East Sea (16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구)

  • Kim, Bo-Bae;Cho, Hye-Youn;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2010
  • To assess community structure and diversity of archaea, a clone sequencing analysis based on an archaeal 16S rRNA gene was conducted at three sediment depths of the continental slope and Ulleung Basin in the East Sea. A total of 311 and 342 clones were sequenced at the slope and basin sites, respectively. Marine Group I, which is known as the ammonia oxidizers, appeared to predominate in the surface sediment of both sites (97.3% at slope, 88.5% at basin). In the anoxic subsurface sediment of the slope and basin, the predominant archaeal group differed noticeably. Marine Benthic Group B dominated in the subsurface sediment of the slope. Marine Benthic Group D and Miscellaneous Crenarchaeotal Group were the second largest archaeal group at 8-9 cm and 18-19 cm depth, respectively. Marine Benthic Group C of Crenarchaeota occupied the highest proportion by accounting for more than 60% of total clones in the subsurface sediments of the basin site. While archaeal groups that use metal oxide as an electron acceptor were relatively more abundant at the basin sites with manganese (Mn) oxide-enriched surface sediment, archaeal groups related to the sulfur cycle were more abundant in the sulfidogenic sediments of the slope. Overall results indicate that archaeal communities in the Ulleung Basin show clear spatial variation with depth and sites according to geochemical properties the sediment. Archaeal communities also seem to play a significant role in the biogeochemical carbon (C), nitrogen (N), sulfur (S), and metal cycles at each site.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

A Method of Rating Curve Adjustment (수위유량곡선보정방법에 대하여)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4116-4120
    • /
    • 1976
  • With the use of many rivers increased nearly to the capacity, the need for information concerning daily quantities of water and the total annual or seasonal runoff has became increased. A systematic record of the flow of a river is commonly made in terms of the mean daily discharge Since. a single observation of stage is converted into discharge by means of rating curve, it is essential that the stage discharge relations shall be accurately established. All rating curves have the looping effect due chiefly to channel storage and variation in surface slope. Loop rating curves are most characteristic on streams with somewhat flatter gradients and more constricted channels. The great majority of gauge readings are taken by unskilled observers once a day without any indication of whether the stage is rising or falling. Therefore, normal rating curves shall show one discharge for one gauge height, regardless of falling or rising stage. The above reasons call for the correction of the discharge measurements taken on either side of flood waves to the theoretical steady-state condition. The correction of the discharge measurement is to consider channel storage and variation in surface slope. (1) Channel storage As the surface elevation of a river rises, water is temporarily stored in the river channel. There fore, the actual discharge at the control section can be attained by substracting the rate of change of storage from the measured discharge. (2) Variation in surface slope From the Manning equation, the steady state discharge Q in a channel of given roughness and cross-section, is given as {{{{Q PROPTO SQRT { 1} }}}} When the slope is not equal, the actual discharge will be {{{{ { Q}_{r CDOT f } PROPTO SQRT { 1 +- TRIANGLE I} CDOT TRIANGLE I }}}} may be expressed in the form of {{{{ TRIANGLE I= { dh/dt} over {c } }}}} and the celerity is approximately equal to 1.3 times the mean watrr velocity. Therefore, The steady-state discharge can be estimated from the following equation. {{{{Q= { { Q}_{r CDOT f } } over { SQRT { (1 +- { A CDOT dh/dt} over {1.3 { Q}_{r CDOT f }I } )} } }}}} If a sufficient number of observations are available, an alternative procedure can be applied. A rating curve may be drawn as a median line through the uncorrected values. The values of {{{{ { 1} over {cI } }}}} can be yielded from the measured quantities of Qr$.$f and dh/dt by use of Eq. (7) and (8). From the 1/cI v. stage relationship, new vlues of 1/cI are obtained and inserted in Eq. (7) and (8) to yield the steady-state discharge Q. The new values of Q are then plotted against stage as the corrected steadystate curve.

  • PDF