• Title/Summary/Keyword: slope risk assessment

Search Result 74, Processing Time 0.023 seconds

A study on development of disaster-risk assessment criteria for steep slope -Based on the cases of NDMS in Ministry of Interior and Safety- (급경사지 재해위험도 평가 기준 개선 방안 연구 -행정안전부 급경사지 관리시스템 사례를 중심으로-)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Jeong, Hyang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.372-381
    • /
    • 2019
  • In this study, the National Disaster Management System (NDMS) was analyzed to evaluate the disaster impact assessment standards for steep slopes. Problems in the assessment methods and systems were discovered, which could be reasons for poor reliability. The disaster-risk evaluation index needs improvement to evaluate various types of retaining walls, such as concrete/reinforced soil walls and reinforcing stone masonry. Additionally, using the same score for overturning, bulging, and efflorescence could be reasons for poor reliability, and different weighting factors are needed. Assessment methods are needed to subdivide the social influence evaluation index while considering environmental conditions of steep slopes, such as railroads and reservoirs. For the evaluation of steep slopes, standards for start and end points of steep slopes should be created for effective management, and disaster impact assessment needs to be performed after redevelopment from an advanced index for protection and reinforcement. These problems were derived from a current evaluation system, so a disaster impact assessment is necessary to supplement the results of this study.

GIS-based Debris Flow Risk Assessment (GIS 기반 토석류 위험도 평가)

  • Lee, Hanna;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.139-147
    • /
    • 2023
  • As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium

  • Nam, Sun-Hwa;Lee, Woo-Mi;An, Youn-Joo
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 2012
  • Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation $method_{Acute\;to\;chronic\;ratio}$ ($SEM_{ACR}$), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 ${\mu}g/l$ and 0.034 ${\mu}g/l$, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

Polychlorinated Biphenyls (PCBs) in the Bio-geochemistry of Oceans

  • Kannan, Narayanan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.201-208
    • /
    • 2007
  • Polychlorinated biphenyls (PCBs) are anthropogenic contaminants found globally in water, ice, soil, air and sediment. Modern analytical techniques allow us to determine these chemicals in environmental matrices at parts per trillion levels or lower. Environmental forensic on PCBs opens up new avenues of investigation such as transport and fate of water masses in oceans, sedimentation, onset of primary production, migration of marine mammals, their population distribution and pharmacokinetics of drugs inside organisms. By virtue of persistence, bioaccumulation, bioconcentration and structure-activity relationship PCBs emerge as unconventional chemical tracers of new sort.

  • PDF

Development of Fragility Curves for Slope Stability of Levee under Rapid Drawdown (수위급강하에 대한 제방 사면의 취약도 곡선 작성)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.27-39
    • /
    • 2023
  • To effectively manage flood risk, it is crucial to assess the stability of flood defense structures like levees under extreme flood conditions. This study focuses on the time-dependent probabilistic assessment of embankment slope stability when subjected to rapid water level drops. We integrate seepage analysis results from finite element analysis with slope stability analysis and employ Monte Carlo simulations to investigate the time-dependent behavior of the slope during rapid drawdown. The resulting probability of failure is used to develop fragility curves for the levee slope. Notably, the probability of slope failure remains low up to a specific water level, sharply increasing beyond that threshold. Furthermore, the fragility curves are strongly influenced by the rate of drawdown, which is determined through hydraulic analysis based on flood scenarios. Climate change has a significant impact on the stability of the water-side slope of the embankment due to water level fluctuations.

A Lower T1 Slope as a Predictor of Subsidence in Anterior Cervical Discectomy and Fusion with Stand-Alone Cages

  • Lee, Su Hun;Lee, Jun Seok;Sung, Soon Ki;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.567-576
    • /
    • 2017
  • Objective : Preoperative parameters including the T1 slope (T1S) and C2-C7 sagittal vertical axis (SVA) have been recognized as predictors of kyphosis after laminoplasty, which is accompanied by posterior neck muscle damage. The importance of preoperative parameters has been under-estimated in anterior cervical discectomy and fusion (ACDF) because there is no posterior neck muscle damage. We aimed to determine whether postoperative subsidence and pseudarthrosis could be predicted according to specific parameters on preoperative plain radiographs. Methods : We retrospectively analyzed 41 consecutive patients (male : female, 22 : 19; mean age, $51.15{\pm}9.25years$) who underwent ACDF with a stand-alone polyether-ether-ketone (PEEK) cage (>1 year follow-up). Parameters including SVA, T1S, segmental angle and range of motion (ROM), C2-C7 cervical angle and ROM, and segmental inter-spinous distance were measured on preoperative plain radiographs. Risk factors of subsidence and pseudarthrosis were determined using multivariate logistic regression. Results : Fifty-five segments (27 single-segment and 14 two-segment fusions) were included. The subsidence and pseudarthrosis rates based on the number of segments were 36.4% and 29.1%, respectively. Demographic data and fusion level were unrelated to subsidence. A greater T1S was associated with a lower risk of subsidence (p=0.017, odds ratio=0.206). A cutoff value of T1S<$28^{\circ}$ significantly predicted subsidence (sensitivity : 70%, specificity : 68.6%). There were no preoperative predictors of pseudarthrosis except old age. Conclusion : A lower T1S (T1S<$28^{\circ}$) could be a risk factor of subsidence following ACDF. Surgeons need to be aware of this risk factor and should consider various supportive procedures to reduce the subsidence rates for such cases.

Landslide Risk Analysis due to Development of Mountain Area (산지지역 개발에 의한 산사태 위험 분석)

  • Namgyun Kim;Yunseong Park
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • In this study, the risk of landslides was analyzed for planned development sites in mountainous areas. Field survey was conducted on the research area with the slope and valley site. The criteria for evaluating the risk of landslides in the field survey were based on the risk assessment table of the Korea Forest Service Notice No. 2023-10. The research area has 13 slopes and 11 valleys. As a result of evaluating the risk area, two slopes and two valley were found to be dangerous sites in each. Numerical simulation was performed on the investigated risk areas to predict the spread of damage. The debris flow was simulated to have an affect on roads and buildings located in the lower part of the basin, and it was determined that a disaster prevention facility was nacessary to minimize damage. This information can be used to determine the impact of disasters before carrying out mountain development.

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model (로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가)

  • Rahnuma, Bintae Rashid Urmi;Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

Risk Assessment of Cut Slope by Gravity Field Interpretation and Modelling (비탈면 위험도 평가를 위한 중력장 해석 및 모델링)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyoung;Lee, Yeong-Jae;Jang, Hyun-Ick
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.533-540
    • /
    • 2021
  • Gravity field analysis and density modeling were performed to evaluate the internal state of the rock mass, which is the cause of cut slope collapse. The shape of the weathered zone and the depth of basement could be confirmed from the complete Bouguer anomaly and density model. The basement depth at the center of the cut slope calculated using the Euler deconvolution inverse method is 30 m, which is about 10 m deeper than the surrounding area. In addition, the depth of basement and the thickness of the weathered zone are similar to the boundary between low resistivity and high resistivity in dipole-dipole survey. From the study results, gravity field analysis and density modeling recognizes the internal state of the rock slope and can be used for slope safety analysis, and is particularly suitable as a method to determine the shape of weathered zones in interpreting the safety of cut slopes