• Title/Summary/Keyword: slope protection

Search Result 212, Processing Time 0.025 seconds

A Study on Bounce Height and Impact Energy Considering Slope Height, Rockfall Weight Using Rockfall Program Considering Slope Height, Rockfall Weight (낙석해석프로그램을 이용한 비탈면 높이, 낙석중량별 도약높이 및 충격에너지 검토)

  • You, Byung-Ok;Han, Won-Jun;Lee, Sang-Duk;Shim, Jea-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2011
  • The rockfall protection fence installed to secure safety against rockfall occurring in cut slope has been designed under the condition with 50kJ of impact energy arising when the 400kg of rock block is falling from 12.5m height. However, in falling case of bigger rock block or from higher place, it is hard to be secure of safety with existing rockfall protection fence. Using the rockfall program, safety analysis for rockfall is conducted in this paper by changing slope height, separating distance from fence, and slope angle, according to rock block sizes. In the result of analysis, when a 400kg of rock block which is designed load is fallen, the existing rockfall protection fence with 2.5m height can secure most of rock fall except some cases for the slope having 20m or less hight, whereas for more than 20m height, the fallen rock is frequently splattered over the rockfall protection fence, as well as the impact energy of rockfall may exceed designed impact energy. Therefore, in the design of rock fence, it is considered appropriate to design that after conducting safety review for rockfall according to the ground conditions, evaluating the bounce height and impact energy of rock fall, and then installing appropriate rockfall protection fence would be applicable rather than just following standards based design drawing.

Runoff of Azoxystrobin Applied in Pepper Field-lysimeter (고추 재배 포장 라이시메타를 이용한 Azoxystrobin의 유출 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Son, Kyeong-Ae;Gil, Geun-Hwan;Ihm, Yang-Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • To investigate runoff losses of azoxystrobin from the field by rainfall, the influence of slope degree and length on runoff rate of azoxystrobin from the pepper field were measured. The SC type formulation was applied at the pepper field lysimeter in 2004 and 2005. The azoxystrobin washed down from plant were from 21% to 68% of what the applied. Concentrations of azoxystrobin in the first runoffs were less than $50{\mu}gL^{-1}$. Runoff losses were from 0.26% to 0.59% for 10% slope-plots, from 0.66% to 0.96% for 20% slope-plots, and from 0.84% to 1.78% for 30% slope-plots. Then they decreased with increasing slope-length. Runoff loss of azoxystrobin was closely related to volume of runoff, it was reduced by the ridge and the mulching effect.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

Application of Environmentally friendly block for the slope stability and protection of Rural Housing (농가주택 법면 보호공을 위한 환경친화블럭의 적용성 평가)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul;Cho, Cheonhee;Han, Hyungu
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.1
    • /
    • pp.101-112
    • /
    • 2000
  • Green environment is most important factor to human being taking a side view of psychological aspect. But, as the civilization progresses rapidly, the green environment decreases. At present, various environmentally friendly methods are developed to prevent the ill effect of the concretes. n this study, Ecostone retaining wall method, which is a kind of environmentally friendly block, are used for verifying the application to the slope stability and protection of rural hosing. In case of rural hosing and structure, the height of the slope is not high and additional loading doesn't act on the slope except the gravity loading of housing and structure. From the result of the stability analysis of Ecostone, 3m to 7m Ecostone retaining wall can have an equivalence capacity comparing with the concrete retaining wall. Therefore, Ecostone method can apply to retaining wall with the structural safety and environmentally friendly aspect using the plants and vegetation.

  • PDF

A Model of Environmental Naturalness for Roadscape - Focused on the National Road in Suburb Areas - (도로경관의 자연환경성 모형 -교외지역 국도를 중심으로-)

  • Hong, Yeong Rok;Gwon, Sang Jun;Jo, Tae Dong
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.505-512
    • /
    • 2004
  • This study was attempted to review the information data for minimizing the destruction of environmental naturalness and the visual damage of landscape from road construction by establishing a model of environmental naturalness for national roads in the suburb areas to suggest an answer to a research question, ' hat does decide the environmental naturalness of roadscape?'. We found that 1) The road-side slope showed no statistical significance in the description of environmental naturalness of roadscape, but the fact that the road-side slope from road construction is the destruction of natural topography cannot be overlooked. 2) In terms of the direction of value variations for independent variables, signboard and telegraph post, soundproofing and protection wall, structure, and building acted toward negative (-) direction, while mountains, sky, road trees, fields, and surrounding green including the road-side slope acted toward positive(+) direction. 3) The variable with highest relative contribution to dependent variables among independent variables is building, which has importance as many as 148 times of road-side slope, while the variable road-side slope has the least importance. Building has the importance of 7.22 times, mountains 5.51 times, road trees 2.59 times, surrounding green 2.54 times, structure 2.41 times, signboard and telegraph post 2.37 times, soundproofing and protection wall 2.20 times, and sky 1.32 times of the fields as a standard criterion values 1.

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

Study on Slope Prevention Effect of Eco-environmental Riprap Structure (친환경 호안구조물의 사면보호 효과에 관한 연구)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.47-51
    • /
    • 2009
  • The slope failure in the country is caused by mainly rainfall and its type is reported shallow slope failures in general. To investigate the cause of slope failure, the unsaturated soil slope behavior in accordance with rainfall amount studies actively, but there are little studies related the slope erosion and scour by rainfall. The slope erosion and scour by rainfall cause environmental pollution and slope instability, however there are few methods to effectively control them. This research analyzed experimentally how infinite gradients are infiltrated according to the changes of amount of rainfall and the slope of gradients by manufacturing the model of gradient in order to investigate how rainfall infiltrates regarding homogeneous gradients and slope protection method. For this, this experiment measured and analyzed discharge, storage rate occurring in gradients by going on changing amount of rainfall, slope of gradients.

  • PDF

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

Analysis of the Safety Factor of Railway Slopes when Rapid Hardening Composite Mat are Applied (초속경 복합매트 적용 시 철도 비탈면 안전율 분석)

  • Seongmin Jang;Jinseong Park;Taehee Kang;Hyuksang Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.21-28
    • /
    • 2023
  • In this paper, an experimental study was conducted to present the properties of rapid hardening composite mat, and a numerical analysis was carried out to analyze the slope protection effect of the mats based on ground conditions, rainfall, slope gradient and soil height. As a result, the application of rapid hardening composite mat increased the slope safety factor in all conditions, and the increase rate of safety factor showed an average of 40% increase both in dry and rainy seasons. Through these research findings, the protective effect of the rapid hardening composite mat on sloping surfaces has been proven, and it is suggested that the rapid hardening composite mat is suitable for application in areas where slope failure or collapse is expected.