• Title/Summary/Keyword: slope movement

Search Result 254, Processing Time 0.031 seconds

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Numerical investigation of floating breakwater movement using SPH method

  • Najafi-Jilani, A.;Rezaie-Mazyak, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.122-125
    • /
    • 2011
  • In this work, the movement pattern of a floating breakwater is numerically analyzed using Smoothed Particle Hydrodynamic (SPH) method as a Lagrangian scheme. At the seaside, the regular incident waves with varying height and period were considered as the dynamic free surface boundary conditions. The smooth and impermeable beach slope was defined as the bottom boundary condition. The effects of various boundary conditions such as incident wave characteristics, beach slope, and water depth on the movement of the floating body were studied. The numerical results are in good agreement with the available experimental data in the literature The results of the movement of the floating body were used to determine the transmitted wave height at the corresponding boundary conditions.

Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women (조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향)

  • Jeon, Hyun-Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

An Analysis of the Behavior of Rock Slope with Excavation-Induced Tension Cracks Located in DongHae Highway Construction Site (개착과정에서 인장균열이 발생된 동해고속도로 건설현장 암반사면의 거동 해석)

  • 조태진;이창영;고기성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.15-27
    • /
    • 2004
  • Sliding aspects of rock slope, where large-scaled tension cracks are induced during preliminary excavation, have been analyzed. Structure of rock mass is investigated by performing the electrical resistivity survey and the orientations and positions of discontinuities are measured from DOM-drilled core log. Geological evidence far primary failure movement has been detected and clay minerals which possess swelling properties are identified through XRD analysis. Slope stability is examined by considering the orientations of discontinuities and their trace distributions on the cut-face and neighboring natural slope surface. Both orientations and positions of failure-invoking discontinuity planes, traces of which are exposed within the anticipated sliding region, are concerned fur analyzing the preferred sliding directions. Regional sliding vectors are assessed based on the relative positions of potential sliding planes in the boreholes and the general trend of anticipated failure movement of rock slope is also investigated.

The Difference of EEI through the Slope of Stairs (계단 높이에 따른 에너지소모지수(EEI)의 변화)

  • Lee, Jung-Rim;Ahn, Duck-Hyun;Kim, Yu-Mi
    • Physical Therapy Korea
    • /
    • v.6 no.2
    • /
    • pp.67-76
    • /
    • 1999
  • Going up and down the stairs is a repeated task in the activities of daily living. These activities are needed during the recovery process with impaired lower limbs. This paper presents the difference of EEI (energy expenditure index) through the slope of stairs. Twenty-one normal young adults took a part in this study (11 males, 10 females). They stepped up and down the stairs which had two different slopes for 5 minutes. Resting heart rate, walking heart rate, and moving distance were recorded. EEI was calculated from the heart rate and moving speed which was calculated by the distance of movement. Data were analyzed by repeated two-way ANOVA with SAS program and the difference of EEI through the slope of stairs was not statistically significant (p=0.9971). The results show that EEI was not affected by the slope of stairs in normal people. But distance of movement (p=0.0067) and speed (p=0.0064) had a significant difference.

  • PDF

An acoustical analysis of emotional speech using close-copy stylization of intonation curve (억양의 근접복사 유형화를 이용한 감정음성의 음향분석)

  • Yi, So Pae
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • A close-copy stylization of intonation curve was used for an acoustical analysis of emotional speech. For the analysis, 408 utterances of five emotions (happiness, anger, fear, neutral and sadness) were processed to extract acoustical feature values. The results show that certain pitch point features (pitch point movement time and pitch point distance within a sentence) and sentence level features (pitch range of a final pitch point, pitch range of a sentence and pitch slope of a sentence) are affected by emotions. Pitch point movement time, pitch point distance within a sentence and pitch slope of a sentence show no significant difference between male and female participants. The emotions with high arousal (happiness and anger) are consistently distinguished from the emotion with low arousal (sadness) in terms of these acoustical features. Emotions with higher arousal show steeper pitch slope of a sentence. They have steeper pitch slope at the end of a sentence. They also show wider pitch range of a sentence. The acoustical analysis in this study implies the possibility that the measurement of these acoustical features can be used to cluster and identify emotions of speech.

A Study on Influence of Constructed Bridge Abutment in Landfill Slope under Laterally Displacing (측방유동 발생 시 성토사면에 시공된 교대의 영향에 대한 연구)

  • Lee, Hangyu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.31-41
    • /
    • 2013
  • The damage caused by lateral movement occurs frequently on site where abutment or retaining wall was built on soft ground along with embankment behind and the study on stability of abutment against lateral movement has been mostly focused on soft ground. However lateral movement occurs not only on soft ground but also on embankment slope which causes the impact on structure. The bridges built in Korea are mostly on mountainous area than soft ground. This study is intended to analyze the ground behavior resulting from lateral movement using finite element analysis method to the section as well as propose the basic data for abutment design on embankment slope through the analysis of the outcome of reinforcement method. As a result, when it comes to the reinforcement with soil surcharge and stabilized pile in slope, lateral movement was reduced by 4~30% and displacement on bearing shoe on abutment was reduced by 2~13%. On the contrary, when reinforced with EPS, lateral float was reduced by 97% and maximum horizontal displacement of bearing shoe on abutment was reduced by 95%. Thus, it's necessary to identify the design technique which is applicable to domestic condition through additional tests and more reliable study using numerical analysis and comparing the measured values shall follow.

Viscous fluid characteristics of liquefied soils and behavior of pile subjected to flow of liquefied soils (액상화된 지반의 점성 유체 특성과 그 흐름이 말뚝의 거동에 미치는 영향 분석)

  • Hwang, Jae-Ik;Kim, Chang-Yeob;Chung, Choong-Ki;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.722-729
    • /
    • 2004
  • The horizontal movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. In this study, a virtual case is assumed in which flow liquefaction is induced by earthquake loads in a fully saturated infinite sand slope with a single pile installation. Under the assumption that the movement of liquefied ground is viscous fluid flow, the influence of ground movement due to flow liquefaction on the pile behavior was analyzed. Since the liquefied soil is assumed as a viscous fluid, its viscosity must be evaluated, and the viscosity was estimated by the dropping ball method ,md the pulling bar method. Finally, the influence of the flow of liquefied soil on a single pile installed in an infinite slope was analyzed by a numerical method.

  • PDF