• Title/Summary/Keyword: slope instability

Search Result 127, Processing Time 0.02 seconds

A Study on the Creation of Slope Instability Map Using Geographic Information Systems. (GIS를 이용한 사면위험도 작성기법 연구)

  • 유명환
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.129-138
    • /
    • 2000
  • The various types of geohazards like landslides resulted from civil construction (i.e. highway construction) must of analysed considering all the possible influential factor systematically. Thus, by using GIS, slope stability can be evaluated, and it can be used as a data for further detailed investigation. So the aim of this study is to present a data for decision making in selecting suitable point for remediation. For analysing slope instability, through appropriate definition and classification, landslide mechanism must be understood. In building GIS model, the selection of appropriate factors and their rating system should be made. For this, the characteristics and the mechanism of landslide have to be understood. And suitable coverage should be chosen for the model considering the slope conditions. In this study, field investigation in lst and 2nd Section, Chung-ang highway was carried out. From the field data, GIS model on slope instability was created. 5 coverages were used for it. From the result of this study, 12 unstable sections were found out and more detailed investigation is needed there.

  • PDF

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Analysis of Slope Stability Using GIS in the Northern Area of Chungju Lake (지구정보시스템을 이용한 충주호 북부 지역의 사면 안정 평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As a part of natural hazard assessment, regional slope stability analysis was conducted using Geoscientific Information System (GIS) in the northern area of Chungju Lake. Selected factors which affect the slope stability in the study area were lithology, soil, density of lineament, groundwater level, dip of slope, aspect of slope, and geological engineering properties. Geological structural domains were determined by collected data of joint orientation from about 200 sites in order to produce a slope instability map. Potential type of failure and its direction could be expected through the domains. And a slope instability map was produced, comparing the representative orientations of the domains with the orientations of the slopes which were made through TIN module in ARC/INFO. Under the consideration of environmental geological characteristics of the study area, rating and weighting of each factor of slope stability analysis were decided and spatial analysis of regional slope stability was couducted through overlaying technique of GIS. The result of areal distribution of slope stability showed that the most unstable area was the area between Mt. Pudae and Mt. Jubong, and the northern area of the railway station, Samtan.

  • PDF

Factor of Safety of Local Instability in Soil Nail Slopes (쏘일네일이 보강된 사면의 국부파괴에 대한 안전율 분석)

  • Koy, Channarith;Kim, Beom-Jun;Jang, Hyun-Ick;Lee, Sang-Rae;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.449-456
    • /
    • 2018
  • In this study, a soil nail design method for a stability analysis of local instability with nail reinforced slope was proposed. The failure mechanism of a local instability of slope was studied and a theoretical equation to estimate the stability of slope was developed. Using the developed equation, the stability analysis was performed according to installation conditions of soil nail such as a slope inclination, a thickness of soil layer, a nail inclination, and a nail spacing. Considering those design factors, a sensitivity analysis for each influence factors was conducted. Analysis results showed that the safety factor of reinforced slope with nail was higher than the slope without nail. In addition, the safety factor of slope according to ground condition was increased in the order of dry, saturated, and seepage condition.

Case Histories of Rock Slope Failure and Restoration (암반사면의 붕괴와 극복사례)

  • Ro, Byung-Don;Park, Wan-Seo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.505-508
    • /
    • 2007
  • Usually, cut-slope is the term that call rock slope. Therefore, the cause of instability of cut-slope is influenced generally in lithological and structure geological qualities including weathering disintegration. Through the several case studies, we could confirm that stabilization countermeasure also should be based in geological properties.

  • PDF

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF

Instability Analysis of Unsaturated Soil Slope Considering Wet Condition (습윤상태를 고려한 불포화 토사사면의 불안정성 해석)

  • Kim, Yong Min;Kim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1489-1498
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate the effect of antecedent rainfall which is assumed by initial conditions varying degree of saturation (36, 51, 77%) in finite element analysis. The distributions of matric suction and deformation on slope surface obtained from numerical simulation show the instability of antecedent rainfall-induced unsaturated soil slope. Moreover, the numerical analysis using Drucker-Prager model can be checked if a soil slope has reached failure (trial failure criterion $f^{tr}$ >0, plastic behavior) or not (trial failure criterion $f^{tr}$ < 0, elastic behavior). It is found that displacement of slope surface layer increases and the matric suction on soil slope decreases with an increase of initial degree of saturation by antecedent rainfall. Especially, the matric suction of the soil slope in dry condition (S=36%) rapidly decreases rather than that in wet condition (S=51%) at the same rainfall duration. The results of the trial failure criterion ($f^{tr}$ > 0) show slope instability in the toe region and surface of the slopes.

Numerical analysis of a complex slope instability: Pseudo-wedge failure

  • Babanouri, Nima;Sarfarazi, Vahab
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.669-676
    • /
    • 2018
  • The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake (GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.