• Title/Summary/Keyword: slope hazards

Search Result 106, Processing Time 0.027 seconds

Measures to Reduce Mine Hazards Caused by Open- cut Mining of Limestone Mines (석회석광산에서 노천채굴에 따른 광해 발생을 감소시키기 위한 대책)

  • Won, Yeon-Ho;Ah, Jin-Man
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • Most of limestone mines in Korea have been developed by a open-cut mining method in consideration of a deposited condition of ore, ore recovery, safety, economic efficiency, etc.. But it has produced environmental problems such as dust flying, blasting noise & vibration, and spoil of farmlands due to slope failure of waste rock mass caused by access road construction, fragmentation & crush of rocks, blasting, transportation, and mineral processing. In this study, it has been suggested for measures to reduce mine hazards caused by open- cut mining of limestone nines.

Development of a Computer Program to Analyze Stability of Slopes Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 안정해석 프로그램 개발)

  • Hong Won-Pyo;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.45-58
    • /
    • 2006
  • A new computer program SLOPILE(Ver 3.0) is developed to analyze stability of slopes containing an earth retention system composing of piles, nails and anchors. SLOPILE(Ver 3.0) can calculate the slope stability for both planar failure surfaces in infinite slopes and arc failure surfaces. In order to investigate a design adaptability of SLOPILE(Ver 3.0), analysis results of TALREN and SLOPE/W programs are compared with that of SLOPILE(Ver 3.0). SLOPILE(Ver 3.0) can calculate the slopes reinforced by earth retention system such as piles, nails and anchors. But, TALREN and SLOPE/W can not calculate the slope reinforced by piles. As a analysis result of the example case, SLOPILE(Ver 3.0) is accuracy and suitable program for the stability analysis of slopes reinforced by earth retention system. Therefore, SLOPILE(Ver 3.0) is the most suitable program to analyze the slope reinforced by the earth retention system.

A Study on Shear Resistance Effect along Marginal Region of Sliding Mass using 3D Slope Stability Analysis (3차원 사면안정해석을 이용한 활동지괴 가장자리부의 전단저항에 관한 연구)

  • Seo Yong-Seok;Ohta Hidemasa;Chae Byung-Gon;Yoon Woon-Sang
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.451-460
    • /
    • 2004
  • The strength of sliding plane is usually assigned on the whole sliding plane with same value in 2D limit equilibrium slope stability method. However, the potential sliding plane is divided into two or three parts which have different sliding resistances. According to the calculation results of 3D slope stability analyses using 4 types of slope cutting models, marginal sliding resistance could affect the safety of slope significantly. In this calculation two kinds of the sliding plane strengths were applied differently to the parts of bottom and margin of the model slope. The effect of marginal resistance was calculated quantitatively. In case of lower sliding resistance of the bottom, the safety factor becomes low in a margin cutting model. However, in case of higher sliding resistance of the bottom, the safety factor decreased slightly in a lower part cutting model and increased in a upper margin cutting model.

Landslide prediction system by wireless sensor network (무선센서 네트워크를 이용한 산사태 모니터링 기초기술 연구)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.191-195
    • /
    • 2007
  • Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.

  • PDF

Analysis of Regional Geologic hazards using GIS (지질재해 분석을 위한 GIS 응용연구)

  • 김윤종;김원영;유일현
    • Spatial Information Research
    • /
    • v.1 no.1
    • /
    • pp.89-94
    • /
    • 1993
  • GIS was appl ied for analysis of the potfnt ial degree of regional geologic hazard, expecially landslide, in the suburb of Seoul city. Potential elements causing a landslide are geology, slope geometry, groundwater, soil property, rainfall and vegetation etc. These factors were incorporated through GIS in order to predict the potential hazards, and to produce a regional geologic hazard map in the study area, For this study, ARC/INFO and ERDAS systems were used in SUN4-390 workstation.

  • PDF

Analysis of Regional Geologic Hazards Using Geographic Information System (GIS(Geographic Information System)를 이용한 광역 지질재해(산사태) 분석 연구)

  • 김윤종;김원영;유일현;박수홍;백종학;이현우
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.2
    • /
    • pp.165-178
    • /
    • 1991
  • A geologic hazard map has been produced in the suburbs of Seoul using GIS technology to analyse the degree of geologic hazard, particularly landslides. Topographic, geologic and soil data were incorporated in a map through GIS, which enable to interpret, analyse and predict the regional geologic hazards. Potential elements causing a landslide are slope geometry, geology, groundwater table, soil property, rainfall and vegetation etc. These elements analysed in the study area were input into GIS system through cartographic simulation to produce the regional geologic hazard map. For this work, ARC/INFO(GIS) and ERDAS(IP) system were used.

A Case Study on the Reinforcement of Stabilizing Piles against Slope Failures in a Cut Slope (사면붕괴가 발생된 절개사면에서의 억지말뚝 보강 사례연구)

  • Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.189-199
    • /
    • 2006
  • This paper presents a field study of the stability of slope collapsed during road construction and proposes a reasonable countermeasure if the current slope is unstable. As a result of slope investigation, it was found that the slope includes five tension cracks and the sliding surface is started from the tension crack and propagated the surface soil layer through weathered rock layer. The slope stability analyses are conducted in case of dry and rainfall seasons. The results indicate that the slope is unstable status. A reinforcement method of slope failure should be selected according to the scale of failure. That is, the scale of slope failure, which is classified small, middle and large size determines the reinforcement method of slope. Since the slope interested in this study is large size failure slope, the reinforcement method to control slope failure is selected stabilizing piles, and seed spray and drainage of surface waterare also selected to remain the factor of safety. The SLOPILE (Ver. 3.0) program is applied in order to do stability analysis of slope reinforced by piles. As the result of analysis, the slope reinforced by a row of piles shows the stable state. It is clearly confirmed that the stabilizing of piles can improve the stability of slope.

Proposal of a Design Method of slope Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 설계법 제안)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • In this study, the design method of slope reinforced by the earth retention systems were systematically developed, and the flow chart of design procedure fur each system were constructed to design the slope rationally. The proposed design method is composed of 5 steps such as field condition investigation step, slope design step, landslide occurrence prediction step, slope failure scale estimation step and reinforcement countermeasure selection step. The quantitative standard of slope failure scale was established based on the arrangement of various overseas standards which is estimating the slope failure, and the analysis of slope failure scale which is occurred in the country. The slope failure scale is classified into three categories the small scale of slope failure is less than $150m^3$ of slope failure volume, the middle scale of slope failure is from $150m^3$ to $900m^3$ and the large scale of slope failure is more than $900m^3$. The earth retention system could be selected by the proposed slope failure scale based on the slope failure volume. Meanwhile, the design methods of earth retention system such as piles, soil nails and anchors were developed. The optimal countermeasure for slope stability could be proposed using above design methods.

Effect of Land Slope on Propagation due to Debris Flow Behavior (전파면의 경사에 따른 토석류 흐름양상에 대한 연구)

  • Lee, Jun Seon;Song, Chang Geun;Kim, Hong Teak;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.52-58
    • /
    • 2015
  • As sudden rainfall has happened, the debris flow has occurred in the mountain area. Recently sudden rainfall occurred so frequently caused by abnormal climate. Thus debris flow hazard had consecutively increased damage because of debris flow. Recently, Enormous damage due to debris flow have occurred in Korea. Various studies have been conducted to prevent search debris flow hazard. This study was carried out for debris flow behavior according to the land slope on propagation. It is the important one among factors that are related to the propagation over the city with respect to debris flow discharge and depth. For the numerical simulations in this study, the land slope was varied of 5, 0, $-5^{\circ}$ to investigate the debris flow behavior with the FLO-2D, often recommended by FEMA to simulate debris flow. To verify the performance of FLO-2D, comparison with the USGS experiments (Iverson et al, 2010) was conducted. From numerical results the propagation length of the debris flow was found the most sensitive one. Maximum of debris flow thickness and velocity and structural vulnerabilities were investigated to the effect of land slope. They was became smaller according to land slope of 5, -5, $0^{\circ}$ in the order. As a result, debris flow behavior analysis about the effect of the land slope could contribute to understand the vulnerability of city for debris flow hazards.

Study on Rainfall infiltration Characteristics for Weathered Soils: Analysis of Soil Volumetric Water Content and Its Application (국내 풍화토의 강우 침투특성 분석을 위한 실험연구: 토양 체적함수비 분석 및 적용성 평가)

  • Kim, Man-Il;Chae, Byung-Gon;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.83-92
    • /
    • 2008
  • In order to analyze infiltration characteristics of rainfall in soil, two laboratory experiments were conducted using an amplitude domain reflectometry (ADR) sensor and a pore water pressure meter (PWP) in this study. The first experiment is to understand the dependency of volumetric water content and temperature for standard sand and weathered granite soil. The second experiment is a laboratory flume test with changes of rainfall condition. As the results of the dependency experiment, the volumetric water content is increased with increase of the output voltage measured by the ADR sensor in both the standard sands and weathered granite soil. Furthermore, the results also indicate necessity of consideration of the temperature dependency under the condition of high volumetric water contents from 0.15 to 0.45. In the flume test, two measurement devices are detected to the variation of volumetric water content and pore water pressure at the installation point of the flume. In especial, the measured values of ADR4 and PWP3 installed on the lower part of slope are higher than those of the others. It means that the lower part of slope plays a role of a runoff face and a beginning point of slope failure.