• Title/Summary/Keyword: slips

Search Result 205, Processing Time 0.028 seconds

Analysis of vasopressin-induced Ca2+ influx in rat hepatocytes

  • Kim, Hyun-Sook;Im, Dong-Soon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.271.2-271.2
    • /
    • 2002
  • To analyze vasopressin-induced Ca$\sub$2+/ influx in liver cells, rat hepatocytes were isolated and attached to collagen-coated cover slips. Using fura-2, a Ca$\sub$2+/-sensing dye, changes in intracellular Ca$\sub$2+/ concentration by vasopressin were monitored. Results in this communication suggested that vasopressin-induced Ca$\sub$2+/ influx consists of two distinguishable components. One was present for a short time and the other was for a long time until it happened. (omitted)

  • PDF

Estimation of MineRo's Kinematic Parameters for Underwater Navigation Algorithm (수중항법 알고리즘을 위한 미내로 운동학 파라미터 예측)

  • Yeu, Tae-Kyeong;Yoon, Suk-Min;Park, Soung-Jea;Hong, Sup;Choi, Jong-Su;Kim, Hyung-Woo;Kim, Dae-Won;Lee, Chang-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • A test miner named MineRo was constructed for the purpose of shallow water test of mining performance. In June of 2009, the performance test was conducted in depth of 100 m, 5 km away from Hupo-port (Korean East Sea), to assess if the developed system is able to collect and lift manganese nodules from seafloor. In August of 2010, in-situ test of automatic path tracking control of MineRo was performed in depth of 120 m at the same site. For path tracking control, a localization algorithm determining MineRo's position on seabed is prerequisite. This study proposes an improved underwater navigation algorithm through estimation of MineRo's kinematic parameters. In general, the kinematic parameters such as track slips and slip angle are indirectly calculated using the position data from USBL (Ultra-Short Base Line) system and heading data from gyro sensors. However, the obtained data values are likely to be different from the real values, primarily due to the random noise of position data. The aim of this study is to enhance the reliability of the algorithm by measuring kinematic parameters, track slips and slip angle.

Current Status of Hip Fracture amongthe Elderly in Pusan (부산지역 노인들의 고관절골절발생실태에 관한 연구)

  • Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.841-850
    • /
    • 2001
  • This study was conducted to find out current status and characteristics, so that the result could provide basic data to establish prevention programs for hip fracture among the elderly. The data were coolected from 199 cases hospitalized in 4 university hospitals in Pusan during three years period from January, 1966 to December, 1998. The data were obtained from medical records and by using questionnaires through telephone contact or direct personal interview with the subjects or their family, and were analyzed with x2-test. The results were as follow: The mean age of elderly hip fractured cases was 75.7 years, and 61.8% were female. The average hospital stay of the cases was 30.8 days, and 73.9% survived. Femur neck fracture cases comprised 51.7% of the toral cases, while trochanteric fracture cases comprised 48.3%. The hip fracture occurred more frequently during the day, shown as 66.9%, and the most frequently due to trips(44.2%), followed by slips(322%), c1ash(14.6%), dizziness(7.5%), and 00 on. Femur neck fracture, however, occurred the most frequently due to trips(51.5%) and, on the other hand, trochanteric fracture due to slips(40.6%) and trips(36.5%). About two third of hip fracture(67.8%) occurred inside of the building. The most frequently mentioned location for hip fractures was rooms or floors(32.1%), followed by streets(24.1%), bathrooms(17.6%), stairways(13.1%), and so on. Trochanteric fracture, especially, more frequently occurred inside of the building(71.9%) as compared to femur neck fracture(64.1 %). The rate of independent indoor walking in femur neck fractured cases reduced from 88.3% to 74.8% after fracture incidences, while the rate reduced from 86.0% to 45.8% in trochanteric fracture cases. It indicated that trochanteric fractures affected the walking ability of the elderly more severely that femur neck fractures. In conclusion, hip fracture occurs as a combined result of aging characteristics, environmental factors, and health related characteristics. Future studies that investigaterisk factors of hip fracture in elderly are recommended.

  • PDF

An Experimental Study on the Effect of Vegetation Roots on Slope Stability of Hillside Slopes (뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구)

  • Lee, In-Mo;Seong, Sang-Gyu;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.51-66
    • /
    • 1991
  • In the stability analysis of hillside slopes, the roots of vegetation have been considered to act as a soil reinforcement. In order to predict the amount of increase in soil shear resistance, produced by tensile strength of roots that intersect a potential slip surface in hillside slopes, new soil -root interaction models are proposed in this paper. For this purpose, firstly, laboratary teats and in-situ tests wert performed on soil-root systems, and experimental results were compared with a couple of soil-root interaction models which had been proposed by Gray, Waldron, and Wu etc. Based on this comparison, a new soil-root interaction model is proposed. Secondly, a probabilistic soil-root model is proposed based on statistical analysis considering random nature of root distribution, root characteristics, and soil-root interactions. Finally, to examine the effect of this root reinforcement system on stability of hillside slopes, a simple three-dimensional stability analysis was performed, and it was shown that root reinforcement had a significant stabilizing influence on shallow slips rather than deep slips in hillside slopes.

  • PDF

Behavior of Fatigue Crack Propagation from Surface Flaw (表面欠陷 에 發생하는 疲勞크랙擧動)

  • 송삼홍;오환섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.150-157
    • /
    • 1985
  • In terms of behavior of fatigue cracks propagated after build-up around the artificial drilled miro-hole, this study has been made of the build-up process of slips and micro cracks, behavior of micro-crack propagation and the definition of fatigue limit under the rotating bending stress with low carbon steel. The results of this study are as follows: (1) The fatigue limit is the repropagating critical stress for the nonpropagating cracks which have grown to some limit around the micro-hole in regard of the magnitude of micro-hole. (2) Behavior of the slips and micro-cracks initiation are occurring simultaneously in front and in rear of micro-hole tips in the view of the rotational direction, regardless of the magnitude of micro-hole. (3) Behavior of fatigue crack propagation is different from magnitude of micro-hole, its behavior is propagation of single crack about respectively large hole, but about respectively small hole, fatigue crack propagated joining phenomena of micro-cracks. (4) The behavior of fatigue fracture is affected by the factor of its defects in the view of magnitude of micro-hole when the diameter of the micro-holes are smaller than 50.mu.m, and this is also affected with the size effect of micro-hole diameter.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.

Quality Assessment of GPS L2C Signals and Measurements

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A series of numerical experiments with measurements observed at continuously operating reference stations (CORS) of the international GNSS services (IGS) and the national geographical information institute of Korea (NGII) have been intensively carried out to evaluate the quality of pseudo-ranges and carrier-phases of GPS L2C signal obtained by various receiver types, benign and harsh operational environment. In this analysis, some quality measures, such as signal-to-noise ratio (SNR), the magnitude of multipath, and the number of cycle slips, the pseudo-range and carrier phase obtaining rate were computed and compared. The SNR analysis revealed an impressive result that the trend in the SNR of C/A and the L2C comparably depends upon type of receivers. The result of multipath analysis also showed clearly different tendency depending on the receiver types. The reason for this inconsistent tendency was seemed to be that the different multipath mitigation algorithm built-in each receiver. The number of L2C cycle slip was less than P2(Y), and L2C measurements obtaining rate was higher than that of P2(Y) in three receiver types. In the harsh observational environment, L2C quality was not only superior to P2(Y) in all aspects such as SNR, multipath magnitude, the number of cycle slips, and measurement obtaining rate, but also it could maintain a level of quality equivalent to C/A. According to the results of this analysis, it's expected that improved positioning performance like accuracy and continuity can be got through the use of L2C instead of existing P2(Y).

MR Evaluation of Tendinous Portions in the Subscapularis Muscle (견갑하근의 건 부분에 대한 자기공명영상을 이용한 분석)

  • Shon, Min-Soo;Koh, Kyoung-Hwan;Lee, Sung-Sahn;Yoo, Jae-Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2011
  • Purpose: The purpose of this study was to document the structural features of the tendinous portions within the non-pathologic subscapularis muscle by performing high resolution MR imaging of the shoulder. Materials and Methods: Between April 2007 and May 2010, we retrospectively obtained the MR scans of 88 consecutive young patients (88 shoulders) who were in their twenties. MRI and MR arthrography were performed using a 3.0-T system for the evaluation of glenohumeral instability and nonspecific shoulder pain. None of the patient in this study had any evidence of injury to the tendon or muscle belly of the subscapularis. On MR images, we recorded the transverse length of a stout tendinous band and the total tendinous portion of the subscapularis. In addition, we recorded the number of intramuscular tendinous slips of the susbscapularis. Results: The mean transverse length of the tendinous band was 15.0 mm (range: 8 to 20 mm). The mean transverse length of the total tendinous portion was 48.9 mm (range: 40 to 60 mm). The number of intramuscular tendinous slips on the base of the glenoid fossa was 3 in 20 (22.72%), 4 in 45 (51.14%) and 5 in 23 shoulders (26.14%). On the lateral portion, the intramuscular tendinous slips became gradually rounder and thicker and they gave converge in the superior direction. Conclusion: In this study, the structural features of the tendinous portions of the subscapularis on the MR scans were identified. This will in return give good justification for the lines to be pulled during biomechanical stimulation and also for the surgical approach to restore the biomechanical function.

Artificial Reestablishment of the Kelp and Red Algal Symbiosis

  • Kwang Young Kim;David J. Garbary
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.243-246
    • /
    • 1999
  • A type of symbiosis was previously described from nature in which the gametophytes of Laminariales were endophytic in filamentous red algae. Here we reconstruct this symbiosis for the first time in laboratory culture using zoospores of the kelp, Undaria pinnatifida, and the red alga, Aglaothamnion oosumiense. Zoospores of U. pinnatifida readily attached to A. oosumiense. In 48 h these spores germinated and the initial germ tube penetrated into the host cell wall leaving only an empty zoospore wall outside the host. Within ten days, four to five-celled endophytic gametophytes were present. Zoospores of Laminaria religiosa which were also inoculated into cultures of A. oosumiense rarely attached to the red alga and never became endophytic. Within ten days the free-living gametophytes of L. religiosa on cover slips became fertile and produced young sporophytes. These observations demonstrate the ability of U. pinnatifida to become endophytic, and show differences in host specificity among kelp species.

  • PDF