• 제목/요약/키워드: slip load distribution

검색결과 56건 처리시간 0.022초

Experimental Study on Interfacial Behavior of CFRP-bonded Concrete

  • Chu, In-Yeop;Woo, Sang-Kyun;Lee, Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.127-134
    • /
    • 2015
  • Recently, the external bonding of carbon fiber reinforced polymer (CFRP) sheets has come to be regarded as a very effective method for strengthening of reinforced concrete structures. The behavior of CFRP-strengthened RC structure is mainly governed by the interfacial behavior, which represents the stress transfer and relative slip between concrete and the CFRP sheet. In this study, the effects of bonded length, width and concrete strength on the interfacial behavior are verified and a bond-slip model is proposed. The proposed bond-slip model has nonlinear ascending regions and exponential descending regions, facilitated by modifying the conventional bilinear bond-slip model. Finite element analysis results of interface element implemented with bond-slip model have shown good agreement with the experimental results performed in this study. It is found that the failure load and strain distribution predicted by finite element analysis with the proposed bond-slip are in good agreement with results of experiments.

Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구 (A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position)

  • 손선천;박규열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구 (A Study on the Analysis of Design Parameters for Development of LSD)

  • 신용호;이동원;신천세
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

THE HYDROMAGNETIC FLOW BETWEEN ECCENTRIC CYLINDERS WITH VELOCITY SLIP AT THE CYLINDER WALLS

  • Meena, S.;Kandaswamy, P.
    • Journal of applied mathematics & informatics
    • /
    • 제6권2호
    • /
    • pp.487-502
    • /
    • 1999
  • The hydrodynamic flow between two eccentric cylinders is examined for small values of modified Reynolds number porosity parameter and the non-dimensional slip velocity parameter in the presence of a radial magnetic field. The stream function and the pres-sure distribution are calculated and the results are presented graph-ically.

박용 디젤기관 캠-롤러 접촉부의 표면 상승 온도 (Flash Temperature of the Cam-Roller Contacting Surface in a Marine Diesel Engine)

  • 김남식;김민남;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.200-208
    • /
    • 2002
  • The flash temperature of the cam-roller contacting surface for a marine diesel engine was analysed numerically. The elastohydrodynamic lubrication pressure and film thickness were adopted to get more accurate frictional coefficient, heat flux and temperature distribution. The maximum flash temperature was increased with both the increasing slip ratio of the contacting surfaces and increasing external load. This study tells that the temperature analysis is an indispensable procedure in designing elastohydrodynamic lubrication contacts on which the slip occurs.

합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델 (FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams)

  • 곽효경;황진욱
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.95-110
    • /
    • 2010
  • 본 논문에서는 합성보의 부착슬립 효과를 고려할 수 있는 유한요소 수치모델을 제안하고자 한다. 전단연결재가 설치된 슬래브와 거더 경계에서 선형 전단력-슬립 관계를 가정하여, 부착슬립 거동을 해석할 수 있는 수치모델이 구현되었다. 본 수치모델을 통하여 축 방향의 자유도를 부가하지 않고 2절점의 보 요소를 적용하여 합성보 경계에서의 슬립 거동을 고려하는 것이 가능하다. 선형 부분전단 연결이론을 토대로 한 슬립 거동의 지배방정식은 슬래브와 거더 경계에서 힘의 평형상태와 단면 내에서 상수로 가정된 곡률을 바탕으로 결정된다. 또한, 지배방정식 구성에 있어서 요소 양 절점에서의 휨 모멘트 값을 필요로 하기 때문에 유한요소 해석으로 도출되는 상수 모멘트를 요소 내에서 선형으로 분포시켰다. 제안된 수치모델을 적용한 해석결과를 기존 연구의 수치해석 결과 및 실험결과와 비교하였으며, 하중-처짐 곡선의 비교를 통하여 본 모델의 성능을 검증하였다.

미소슬립을 고려한 압입 시편의 접촉응력 해석 (Contact Stress Analysis of Shrink-fitted Specimen considering Micro-slip)

  • 이동형;구병춘;이찬우;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.632-637
    • /
    • 2004
  • In the shrink or press fitted shaft such as railway axle, fretting can occur by cyclic stress and micro-slippage due to local movement between the shaft and the hub. When the fretting occurs in the press fitted shaft, the fatigue strength remarkably decreases compared with that of without fretting. In this paper, the analysis of contact stresses in a press fitted shaft in contact with a hub was conducted by finite element method and the micro-slip according to the bending load was analyzed. It is found that the largest stress concentration and maximum slip amplitude of shrink fitted shaft are found at the edge of the interface and the distribution of contact stresses at the contact edge has largely influenced and coefficient of friction.

  • PDF

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures

  • Chen, Zongping;Liu, Xiang;Zhou, Wenxiang
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.509-523
    • /
    • 2018
  • This paper presents experimental results on the residual bond-slip behavior of high strength concrete-filled square steel tube (HSCFST) after elevated temperatures. Three parameters were considered in this test: (a) temperature (i.e., $20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 HSCFST specimens were designed for push-out test after elevated temperatures. The load-slip curves at the loading end and free end were obtained, in addition, the distribution of steel tube strain and the bond stress along the anchorage length were analyzed. Test results show that the shape of load-slip curves at loading ends and free ends are similar. With the temperature constantly increasing, the bond strength of HSCFST increases first and then decreases; furthermore, the bond strength of HSCFCT proportionally increases with the anchoring length growing. Additionally, the higher the temperature is, the smaller and lower the bond damage develops. The energy dissipation capacity enhances with the concrete strength rasing, while, decreases with the temperature growing. What is more, the strain and stress of steel tubes are exponentially distributed, and decrease from the free end to loading end. According to experimental findings, constitutive formula of the bond slip of HSCFST experienced elevated temperatures is proposed, which fills well with test data.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.