• 제목/요약/키워드: sliding time

Search Result 824, Processing Time 0.028 seconds

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Integral Sliding Mode Control for Robot Manipulators (로봇 매니퓰레이터를 위한 적분 슬라이딩 모드 제어)

  • Yoo, Dong-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1266-1269
    • /
    • 2008
  • We propose an integral sliding mode control for robot manipulators guaranteeing that sliding motion exists starting from an initial time. Also, we prove the asymptotic stability for robot manipulators using three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices. From illustrative examples, we show that the proposed method effectively controls for robot manipulators.

A Design of Sliding Mode Observer for SISO Linear Systems (단일 입.출력 선형시스템에 대한 슬라이딩 모드 관측기 설계)

  • 문형장;권성하;박승규;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.24-24
    • /
    • 2000
  • This paper proposes a design method of sliding mode observer for SISO linear systems with a disturbance input. We first construct an observer with a constant gain matrix, a feedforward injection map and an external feedforward compensation signal input. Using the second Lyapunov method, we present a sufficient condition for the existence of sliding mode observer. The proposed observer guarantees that the state error trajectories enter a certain region in finite time and remain inside thereafter.

  • PDF

Model reference sliding mode control for the system with input/ouput disturbance (입.출력 외란을 가지는 시스템에 대한 기준모델 슬라이딩 모드 제어)

  • 김우태;김가규;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.387-387
    • /
    • 2000
  • In this paper, we present a model reference sliding mode control for the system with input/output disturbance. The proposed model reference sliding mode control makes always the error remain on the surface in finite time. Therefore the system is insensitive to external disturbance. Simulation results are included to illustrate the effectiveness of proposed scheme.

  • PDF

Prediction of Creep Rupture Time and Strain of Steam Pipe Accounting for Material Damage and Grain Boundary Sliding (재료손상과 입계 미끄럼을 고려한 증기배관의 크리프 파단수명 및 변형률 예측)

  • 홍성호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1182-1189
    • /
    • 1995
  • Several methods have been developed to predict the creep rupture time of the steam pipes in thermal power plant. However, existing creep life prediction methods give very conservative value at operating stress of power plant and creep rupture strain cannot be well estimated. Therefore, in this study, creep rupture time and strain prediction method accounting for material damage and grain boundary sliding is newly proposed and compared with the existing experimental data. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The results showed good correlation between the theoretically predicted creep rupture time and the experimental data. And creep rupture strain may be well estimated by using the proposed method.

A Time-Varying Sliding Mode for Robotic Manipulators

  • Lee, Sung-Young;Jeon, Hae-Jin;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.61.2-61
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Dynamics of robotic manipulator $\textbullet$ Time-varying sliding surface $\textbullet$ Fuzzy rule, Membership function $\textbullet$ Application to a two degree robotic manipulator $\textbullet$ Conclusion

  • PDF

An Adaptive Fuzzy Sliding-Mode Control for Decoupled Nonlinear Systems (분리된 비선형 시스템의 적응 퍼지 슬라이딩모드 제어)

  • Kim, Do-U;Yang, Hae-Won;Yun, Ji-Seop
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.719-727
    • /
    • 2002
  • We proposed a decoupled adaptive fuzzy sliding-mode control scheme for a class of fourth-order nonlinear systems. The system is decoupled into two second-order systems such that each subsystem has a separate control target expressed in terms of sliding surface. For these sliding surfaces, we define main and sub target conditions. and, we made intermediate variables which are interconnected both surface conditions from the sub target sliding surface. Then, Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target sliding surface including intermediate variables. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of sliding-mode control, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce the computing time considerably. We apply the decoupled adaptive sliding-mode control to a nonlinear Cart-Pole system and confirms the validity of the proposed approach.

Enhancement of the Speed Response of PMSM Sensorless Control Using A New Adaptive Sliding Mode Observer (새로운 적응 슬라이딩 모드 관측기를 이용한 PMSM 센서리스 속도 응답특성 향상)

  • Kim, Hong-Ryel;Son, Ju-Beom;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • This paper proposes an adaptive sliding mode observer (SMO), which adds the estimation function of the stator resistance to a new sliding mode observer for the robust sensorless control of permanent magnet synchronous motor (PMSM) with variable parameters. To reduce the chattering problem commonly found in the conventional sliding mode observer where the low-pass filter and additional position compensation of the rotor are used, the sigmoid function is used for the control of a switching function in this research. With the estimation of the stator resistance, the proposed observer can improve the control performance by reducing the estimation error of the motor's speed. Note that the stator resistance is varying with the ambient temperature and becomes an error source for the sensorless control of PMSM. The new sliding mode observer has better efficiency than the conventional adaptive sliding mode observer by reducing the time consuming integral calculations. The stability of the proposed adaptive sliding mode observer is verified by the Lyapunov function in determining the observer gains, and the effectiveness of the observer is demonstrated by simulations and experiments.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

Sliding mode control for structures based on the frequency content of the earthquake loading

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • A control algorithm for seismic protection of building structures based on the theory of variable structural control or sliding mode control is presented. The paper focus in the design of sliding surface. A method for determining the sliding surface by pole assignment algorithm where the poles of the system in the sliding surface are obtained on-line, based on the frequency content of the incoming earthquake signal applied to the structure, is proposed. The proposed algorithm consists of the following steps: (i) On-line FFT process is applied to the incoming part of the signal and its frequency content is recognized. (ii) A transformation of the frequency content to the complex plane is performed and the desired location of poles of the controlled structure on the sliding surface is estimated. (iii) Based on the estimated poles the sliding surface is obtained. (iv) Then, the control force which will drive the response trajectory into the estimated sliding surface and force it to stay there all the subsequent time is obtained using Lyapunov stability theory. The above steps are repeated continuously for the entire duration of the incoming earthquake. The potential applications and the effectiveness of the improved control algorithm are demonstrated by numerical examples. The simulation results indicate that the response of a structure is reduced significantly compared to the response of the uncontrolled structure, while the required control demand is achievable.