• Title/Summary/Keyword: sliding resistance

Search Result 323, Processing Time 0.027 seconds

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings

  • Zheng, Yue;Dong, You;Chen, Bo;Anwar, Ghazanfar Ali
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.127-139
    • /
    • 2019
  • Residual drifts after an earthquake can incur huge repair costs and might need to replace the infrastructure because of its non-reparability. Proper functioning of bridges is also essential in the aftermath of an earthquake. In order to mitigate pounding and unseating damage of bridges subjected to earthquakes, a self-adaptive Ni-Ti shape memory alloy (SMA)-cable-based frictional sliding bearing (SMAFSB) is proposed considering self-adaptive centering, high energy dissipation, better fatigue, and corrosion resistance from SMA-cable component. The developed novel bearing is associated with the properties of modularity, replaceability, and earthquake isolation capacity, which could reduce the repair time and increase the resilience of highway bridges. To evaluate the super-elasticity of the SMA-cable, pseudo-static tests and numerical simulation on the SMA-cable specimens with a diameter of 7 mm are conducted and one dimensional (1D) constitutive hysteretic model of the SMAFSB is developed considering the effects of gap, self-centering, and high energy dissipation. Two types of the SMAFSB (i.e., movable and fixed SMAFSBs) are applied to a two-span continuous reinforced concrete (RC) bridge. The seismic vulnerabilities of the RC bridge, utilizing movable SMAFSB with the constant gap size of 60 mm and the fixed SMAFSBs with different gap sizes (e.g., 0, 30, and 60 mm), are assessed at component and system levels, respectively. It can be observed that the fixed SMAFSB with a gap of 30 mm gained the most retrofitting effect among the three cases.

Hard TiN Coating by Magnetron-ICP P $I^3$D

  • Nikiforov, S.A.;Kim, G.H.;Rim, G.H.;Urm, K.W.;Lee, S.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.414-420
    • /
    • 2001
  • A 30-kV plasma immersion ion implantation setup (P $I^3$) has been equipped with a self-developed 6'-magnetron to perform hard coatings with enhanced adhesion by P $I^3$D(P $I^3$ assisted deposition) process. Using ICP source with immersed Ti antenna and reactive magnetron sputtering of Ti target in $N_2$/Ar ambient gas mixture, the TiN films were prepared on Si substrates at different pulse bias and ion-to-atom arrival ratio ( $J_{i}$ $J_{Me}$ ). Prior to TiN film formation the nitrogen implantation was performed followed by deposition of Ti buffer layer under A $r^{+}$ irradiation. Films grown at $J_{i}$ $J_{Me}$ =0.003 and $V_{pulse}$=-20kV showed columnar grain morphology and (200) preferred orientation while those prepared at $J_{i}$ $J_{Me}$ =0.08 and $V_{pulse}$=-5 kV had dense and eqiaxed structure with (111) and (220) main peaks. X-ray diffraction patterns revealed some amount of $Ti_{x}$ $N_{y}$ in the films. The maximum microhardness of $H_{v}$ =35 GN/ $M^2$ was at the pulse bias of -5 kV. The P $I^3$D technique was applied to enhance wear properties of commercial tools of HSS (SKH51) and WC-Co alloy (P30). The specimens were 25-kV PII nitrogen implanted to the dose 4.10$^{17}$ c $m^{-2}$ and then coated with 4-$\mu\textrm{m}$ TiN film on $Ti_{x}$ $N_{y}$ buffer layer. Wear resistance was compared by measuring weight loss under sliding test (6-mm $Al_2$ $O_3$ counter ball, 500-gf applied load). After 30000 cycles at 500 rpm the untreated P30 specimen lost 3.10$^{-4}$ g, and HSS specimens lost 9.10$^{-4}$ g after 40000 cycles while quite zero losses were demonstrated by TiN coated specimens.s.

  • PDF

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Effect of Water Stress at Different Growth Stages on the Growth and Yield of the Transplanted Rice Plants (벼의 생육기별 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 남상용;권용웅;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.31-41
    • /
    • 1986
  • Knowledge of the degree of yield reduction due to water stress at different crop growth stages in rice production is important for rational scheduling of irrigation during periods of insufficient water supply. Previous studies to determine the degree of yield reduction duo to water stress suffered from interruptions by rain during experiment. Also the findings did rot relate the degree of water stress to the soil water potential and water deficit status of rice plants. In this study, two years experiments were conducted using the high yielding rice varieties, an Indica x Japonica (Nampoong) and a Japonica variety(Choochung). These were grown in 1/200$^{\circ}$ plastic pots placed under a rainfall autosensing, sliding clear plastic roof facility to control rainfall interruptions. The results obtained were as follows. 1.The two varieties differed in the growth stage most sensitive to water stress as well as the degree of yield reductions. When rice plants were stressed to the leaf rolling score 4 and soil water potential of about - 20 bar at major crop growth stages which included heading, booting, non-effective tillering, panicle initiation and early tillering stages, the yield reductions in the Indica x Japonica variety were 58%, 34%, 27%, 22%, and 21%, respectively, whereas in the Japonica vairety they were 23%, 36%, 1%, 13% and 22%, respectively. This result show that the recommended drainage during non-effective tillering is valid only for the Japonica variety. Sufficient irrigation at booting, heading and early tillering stages are necessary for both varieties. 2.The two varieties showed visible wilting symptoms when the soil water potential dropped to about - 3.0 bar. The Japonica variety showed more leaf rolling than the Indica X Japonica. However, it had a higher retention of leaf water content and greater stomatal diffusive resistance. When the soil water potential dropped, the Japonica variety showed leaf rolling score (LRS) 1 at 0 soil-5. 0 bar and LRS 2 at 0 soil -6.0 bar while the Indica X Japonica showed LRS 1 at 0 soil - 5.5 bar and LRS 2at 0 Soil - 9.0 bar. The stomatal diffusive resistance was maximum at the second top leaf blade in both varieties at intermediate water stress of 0 soil - 4.5 bar. 3.The number of days that was required for the soil water potential to drop to-3. 0 bar and to - 20.0 bar after drainage of irrigation water from the 20cm deep silty clay loam soil in the pots were 6 and 13 days, respectively for booting stage, and 7 and 11 days, respectively for heading stage, 9 and 12 days, respectively for panicle initiation stage, and 12 and 19 days, respectively for early tillering stage. 4.Water stress during the early tillering stage recorded the longest delay in beading time, the largest reduction in panicle numbers and a substantial yield decrease of 20%. This calls for better water management to ensure the availability of water at this stage, particularly during drought periods. In addition, a reexamination of the conventional inter-drainage practice during the non-effective tillering stage is necessary for the high yielding Indica X Japonica varieties.

  • PDF

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 1. Stability of Amor Blocks (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 1 피복 블록의 안정성)

  • Kim Seung-Woo;Suh Kyung-Duck;Oh Young Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.188-201
    • /
    • 2005
  • This is the first part of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. This paper, Part 1, is restricted to stability of armor blocks, while Part 2 deals with sliding of caissons. Reliability design methods have been developed fur breakwater designs since the mid-1980s. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed. In the Level 1 method, partial safety factors are used, which are predetermined depending on the allowable probability of failure. In the Level 2 method, the probability of failure is evaluated with the reliability index, which is calculated using the means and standard deviations of the load and resistance. The load and resistance are assumed to distribute normally. In the Level 3 method, the cumulative quantity of failure (e.g. cumulative damage of armor blocks) during the lifetime of the breakwater is calculated without assumptions of normal distribution of load and resistance. Each method calculates different design parameters, but they can be expressed in terms of probability of failure so that tile difference can be compared among the different methods. In this study, we applied the reliability design methods to the stability of armor blocks of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the target probability of failure while that for the reinforced breakwater is much lower than the target value, indicating that the breakwaters before damage and after reinforcement were under- and over-designed, respectively. On the other hand, the results of the different reliability design methods were in fairly good agreement, confirming that there is not much difference among different methods.

Evaluation of friction of ceramic brackets in various bracket-wire combinations (브라켓 각도 변화에 따른 세라믹 브라켓의 마찰력 측정)

  • Cha, Jung-Yul;Kim, Kyung-Suk;Kim, Dong-Choon;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.125-135
    • /
    • 2006
  • The purpose of this study was to measure and compare the level of frictional resistance generated from three currently used ceramic brackets; 1, Crystaline $V^{(R)}$, Tomy International Inc., Tokyo, Japan; 2, $Clarity^{(R)}$, 3M Unitek, Monrovia, CA, USA; 3, $Inspire^{(R)}$, Ormco, Orange, CA, USA; with composite resin brackets, Spirit, Ormco, Orange, CA, USA; and conventional stainless steel brackets, Kosaka, Tomy International Inc., Tokyo, Japan used as controls. In this experiment, the resistance to sliding was studied as a function of four angulations $(0^{\circ},\;5^{\circ},\;10^{\circ}\;and\;15^{\circ})$ using 2 different orthodontic wire alloys: stainless steel (stainless steel, SDS Ormco, Orange, CA, USA), and beta-titanium (TMA, SDS Ormco, Orange, CA, USA). After mounting the 22 mil brackets to the fixture and $.019{\times}.025$ wires ligated with elastic ligatures, the arch wires were slid through the brackets at 5mm/min in the dry state at $34^{\circ}C$. Silica-insert ceramic brackets generated a significantly lower frictional force than did other ceramic brackets, similar to that of stainless steel brackets. Beta-titanium archwires had higher frictional resistance than did stainless steel, and all the brackets showed higher static and kinetic frictional force as the angulation increased. When the angulation exceeded $5^{\circ}$, the active configuration emerged and frictional force quickly increased by 2.5 to 4.5-fold. The order of frictional force of the different wire-bracket couples transposed as the angle increased. The silica-insert ceramic bracket is a valuable alternative to conventional stainless steel brackets for patients with esthetic demands.