• Title/Summary/Keyword: sliding parts

Search Result 140, Processing Time 0.022 seconds

Design of Receding Horizon Control for Boiler-Turbine Systems (보일러-터빈 시스템을 위한 이동구간 예측제어기 설계)

  • Lee, Young-I.;Lee, Gi-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.441-445
    • /
    • 1997
  • In this paper, we suggest a design scheme of receding horizon predictive control(RHPC) for boiler-turbine systems whose dynamics are given in nonlinear equations. RHPC is designed for linear state space models which are obtained at a nominal operating point of the boiler-turbine system. In this consideration, the boiler is operated in a sliding pressure mode, in which the reference value of drum pressure is changing according to the electrical power generation. The reference values of the system outputs are prefiltered before they are fed to the RHPC in order to compensate the linearization errors. Simulation results show that the proposed controller provides acceptable performances in both of the cases of 'steep and small changes' and 'slow and large changes' of power demand and yields the effect of modest coordination of conventional PID schemes such as boiler-following and turbine-following control.

  • PDF

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF

A Study on Path Tracking Control for Mobile Robot Using Cross Coupling (크로스 커플링을 이용한 이동 로봇의 경로제어에 관한 연구)

  • Han, Young-Seok;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2351-2353
    • /
    • 1998
  • This paper suggests the wheel controller for PWS(Power Wheeled Steering) mobile robot. The proposed controller consists of two parts. To control each motor, the sliding mode controller implemented. This method has robustness about modeling error and disturbance, so the velocity tracking is well guaranteed in the presence of varying load. The design of a fuzzy cross-coupling controller for a PWS mobile robot is described here. Fuzzy cross-coupling control directly minimizes the tracking error by coordinating the motion of the two drive wheels. The fuzzy cross-coupling controller has excellent disturbance rejection and therefore is advantageous when the robot is not loaded symmetrically. The capability of the proposed controller was verified through the computer simulation.

  • PDF

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

Axisymmetric Temperature Analysis of Ventilated Disk using Equivalent Parameters (등가상수를 이용한 벤트레이트 디스크의 축대칭 온도 해석)

  • 여태인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.137-142
    • /
    • 2003
  • In automotive brake systems, the frictional heat generated can cause high temperature at the interface of rotor and pad which may deteriorate the material properties of the sliding parts and can result in brake fade. Conventionally, a pie-shaped 3-dimentional model is adopted to calculate temperature of ventilated disk using finite element method. To overcome the difficulties in preparing 3D finite element model and reduce the computational time required, the ventilated rotor is to be analyzed, in this study, as an axisymmetric finite element model in which, taking into considerations the effects of cooling passages, a homogenization technique is used to obtain the equivalent thermal properties and boundary conditions for the elements placed at the vent holes. Numerical tests show the proposed procedure can be successfully applied in practice, replacing 3-dimensional thermal analysis of ventilated disk.

Effect of surface hardness on piston wear in the oil hydraulic piston pump (유압 피스톤 펌프의 피스톤 마모에 대한 표면경도의 영향)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.340-345
    • /
    • 2001
  • Surface hardness is one of the major sources on wear in the oil hydraulic axial piston pump. To increase the performance of the oil hydraulic axial piston pump, it is need to know the surface layer characteristics in the sliding contact parts of them. This paper reports an experimental study on surface treatment characteristics in the piston of the oil hydraulic axial piston pump. We investigated surface wear with not only surface hardness and surface roughness but also material of the piston. We obviously observed that the surface hardness of piston in the oil hydraulic axial piston pump plays an important role to high power density and remain long life.

  • PDF

The Development of Men's Dress Form for Pattern Making (패턴메이킹을 위한 남성(男性) 인대개발(開發)에 관(關)한 연구(硏究))

  • Yoo, Hyun;Shim, Boo-Ja
    • Journal of Fashion Business
    • /
    • v.10 no.5
    • /
    • pp.159-179
    • /
    • 2006
  • This research checked about the necessity for the development of men's dress forms in the first investigation for the educational circle and the men's wear industry. Somatotype characteristics were analyzed in the second investigation of body measurement with the subjects of 200 male adults in their twenties residing in Busan. The following are the results of the present research to develop male dress forms for patternmaking: 1. In the group analysis for the characterization of front body types, three somatotypes were found and named H, Semi X, and Y. In the cluster analysis of side body types, four types were identified: D, I, d, and q. In the combination of front and lateral body types, four kinds were chosen: semi X-I, semi X-q, semi Y-I, and Y-q. 2. Through the comparison of plane figures by the plaster method as well as horizontal and vertical cross sections by the sliding gauge method, semi X-I was finally chosen as the standard somatotype for male dress form development. 3. Compared with the sliding gauge method of the present dress forms, the research dress form reflected better the shapes of the parts of the back and hips and the position of the waist, especially for males in their 20's. In addition, the dress form in the current research had superior points in all the items of clothing evaluation. Based on the above results, the sizes and models of the men's dress forms for patternmaking were developed.

Effects of Additives on the Friction and Wear Properties of PTFE Composites (PTFE 복합재료의 마찰 . 마모 특성에 미치는 첨가제의 영향)

  • 김용직;엄수현;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.88-94
    • /
    • 1999
  • Recently, PTFE-polyimide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. The friction and wear test was carried out for the different composition ratio under the atmosphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. Notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20%-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s because adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI 80%. PI 100% showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

A Study on the Enhance of Air tightness Performance of a New Type Silding Window with horizontally Rolling Wheels (수평 구름 바퀴가 적용된 신 유형 미서기 창문의 기밀성능 개선에 관한 연구)

  • Jang, Hyok-Soo;Kim, Young-Il;Chuung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • Crevices between window and window frame cause not only heat losses but also serve path to sound transmission and infiltration of fine dusts that are harmful to humans. There were many efforts in the past to eliminate these crevices but because of the windows' indispensable function of opening and closing, it was an unsolvable problem. In this study, a new type sliding window is developed by applying horizontally rolling wheels to implement a surface sealing which is excellent for enhancing air tightness. To evaluate the feasibility of the newly developed window, forces for opening and closing, durability and air tightness were testet according to Korean Testing Standards. Force for opening a 2000 N window is 30 N. It endured 100,000 cycles of opening and closing. Infiltration was $0.00m^3/(m^2h)$ for a pressure difference of 10 Pa. Since this window has few moving parts, it has favorable features of low cost and few breakdown.

A Study on Efficiency of Tapered Roller Bearing for an Automatic Transmission (승용차 자동변속기용 테이퍼 롤러 베어링의 효율개선 연구)

  • Lee, In-Wook;Han, Sung Gil;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-36
    • /
    • 2018
  • Automotive fuel efficiency regulations and air pollution control are hot issues of recent years in the automotive industry. To solve these regulation problems, many studies are continuing to improve the transmission efficiency of transmissions. Tapered roller bearings are useful to improve the transmission efficiency in the recent automobile parts. The frictional losses in the tapered roller bearings are mainly composed of the rolling friction and the sliding friction, and are dependent upon the load, the lubrication, the rotation speed of bearings, and etc. In this paper, the operating conditions of the transmission are defined and then the power losses of each bearing are calculated. In addition, improvement options are suggested after identifying the design factors influenced much by the improvement effect of power loss under the operating conditions of each bearing. We compare the power losses of the entire transmission system due to bearing improvements by comparing the friction losses between the original design and the improved design. Lastly, it is shown that the calculated power losses are valid by comparing the test values and the theoretical values for the frictional torque characteristics of the original and improved bearings.