• Title/Summary/Keyword: sliding friction surface

Search Result 352, Processing Time 0.024 seconds

Effect of Purity of Alumina Ceramics on the Water Lubrication Mechanism (알루미나 세라믹스 순도에 따른 수윤활기구에 관한 연구)

  • 진동규;박흥식;전태옥
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.13-20
    • /
    • 1995
  • The present study was undertaken to investigate the purity variation of the alumina ceramics on the water lubrication mechanism. The annular surface of wear testing specimens of the alumina ceramics with different alumina purity against STB2 was rubbed in the distilled water under various sliding speed, contact pressure and sliding distance. The friction coefficient decreased lowered with formation of corrosion products due to the tribochemical reation as the sliding speed and contact load was increased. With increased sliding speed, the lower purity of 85 percent contribute largely to even degree of the friction surface, even it have about $\mu$ of 0.3 degree by the influence of a pore and impurities SiO$_{2}$. The friction surface of ceramics protacted by oxide was transfer from STB2.

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF

Reducing the friction and the wear of carbon fiber composites with micro-grooves (미소채널 구조를 이용한 탄소 섬유 복합재료 면의 마찰 및 마모 감소)

  • Lee H.G.;Lee D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.855-859
    • /
    • 2005
  • Carbon fiber polymeric composites have been widely used in bearing materials under high pressure without oil-lubrication due to their self-lubricating characteristics. However, the severe wear of carbon composite surface occurs due to the generation of wear debris when the pressure applied on the composite surface is higher than the critical value of composite surface. In this work, in order to remove wear debris continuously during sliding operation, composite specimens with many micro-grooves on their sliding surfaces were devised. To investigate the effect of wear debris on the tribological behavior of carbon/epoxy composites, dry sliding tests were performed with respect to applied pressure using the composite specimens with and without micro-grooves. From the measurement of friction coefficients and wear rates, a model for the effect of wear debris on the friction and wear of composites was proposed.

  • PDF

Lubrication Characteristics of Surface Textured Hydraulic Machine Components (표면조직 가공한 유압부품면에서의 윤활특성)

  • Lee, J.O.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2012
  • Friction reduction between sliding hydraulic machine components is required to improve efficiency and reliability of hydraulic machineries. It is recently reported that surface texturing on sliding bearing surfaces can reduce the friction force highly. In this paper, numerical analysis is carried out to investigate the effect of dimple numbers and inlet boundary pressures on the lubrication characteristics of a parallel sliding bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the pressure distribution, load capacity, dimensionless friction force and leakage with dimple number and their locations, and inlet pressures. The overall lubrication characteristics are highly affected by dimple numbers and boundary pressure. The numerical method adopted and results can be used in design of efficient hydraulic machine components.

Tribological Characteristics for High Perfomance Metallic Friction Materials (고성능 금속마찰재의 트라이볼로지적 특성)

  • 김석삼;김재호;안효준
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Friction and wear test for two kinds of Cu-based sintered metallic friction material against cast iron disk was carried out by plate-on-disk type friction and wear tester to investigate the friction and wear characteristics of brake system in severe condition. In this experimental study, the counter specimen was cast iron which is being used generally in brakes of heavy duty equipments. Test friction materials were A type which was manufactured by foreign company and B type by domestic company. Friction coefficient and wear volume were measured and compared with each other. The experiment was performed under room temperature. The worn surface of cast iron disk and friction material were observed by scanning electron microscope. The temperature of surface of disk was measured continuously by the non-contacting thermometer. It was found that A type friction material had stable friction coefficient over the wide range of sliding condition, but B type friction material had unstable friction coefficient and lower value of 0.2 under the severe sliding condition.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

Analysis of Friction Signals Based on Sliding Tests with Finger for Tactile Sensibility (촉감 감성 해석을 위한 미끄럼 마찰 시험과 신호 분석)

  • Park, JinHwak;Park, SeMin;Sesaldo, May Grace;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.167-170
    • /
    • 2013
  • The friction behavior of human skin is determined by the complex interplay of the material and surface properties of the skin, as well as the contacting material, and strongly depends on the contact parameters (e.g., pressure and sliding velocity) and the presence of substances such as water, sweat, or skin surface lipids at the interface. Including a study on the effect of a surface's physical roughness for skin sliding over the surface, various studies have been conducted to understand human tactile sensibility. However, to investigate products in relation to human tactile sensibility, more objective research is needed. This study performed sliding experiments between the skin and the surfaces of phone cases to understand how the texture, friction, and stick-slip characteristics are related. Eight phone case surfaces with different topologies and chemical (or mechanical) compatibilities with skin were prepared and tested multiple times.

Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates

  • Tsai, C.S.;Lin, Yung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.167-190
    • /
    • 2011
  • In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing numerous intermediate sliding plates. By means of mathematical formulations which have been validated by experimental results of bidirectional ground shaking, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from the component and shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Tribological Behaviors Against Counterpart Materials of Ti-Si-N Coating Layers Prepared by a Hybrid Coating System (하이브리드 코팅시스템에 의해 제조된 Ti-Si-N 코팅막의 상대재에 대한 마모거동 연구)

  • 박옥남;박종현;윤석영;권식철;김광호
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.116-121
    • /
    • 2003
  • Ti-Si-N coating layers were deposited onto WC-Co substrates by a hybrid system of arc ion plating (AIP) and sputtering techniques. The tribological behaviors of Ti-Si-N coating layers with various Si contents were investigated by the dry sliding wear experiments, which were conducted at three different sliding speeds, 0.1, 0.3, 0.5 m/s, against the steel and alumina balls. In the case of steel ball, the average friction coefficient slightly decreased with increasing the sliding speed regardless of Si content due to adhesive wear behavior between coating layer and steel ball. At constant sliding speed, the average friction coefficient decreased with increase of Si content. On the contrary, in the case of alumina ball, the average friction coefficient increased with increasing the sliding speed regardless of Si content, indicating that the abrasive wear behavior was more dominant when the coating layers slide against alumina ball. Through these experimental results, it was found that the tribological behaviors of Ti-Si-N coating layers were effected by factors such as Si content, sliding speed, and kinds of counterpart materials rather than the hardness of coating layer.

Effect of characteristic of surface roughness on friction and wear in sliding (표면 조도의 변화에 따른 마찰 및 마멸 특성)

  • 이상욱;서만식;구영필;조용주;박노길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.292-299
    • /
    • 1998
  • The effect of characteristic of surface roughness on friction and sliding wear was studied experimentally with ball-on-disk type wear tester. The test was conducted with specimens those have varying arithmetic mean value, skewness and kurtosis under the condition of different load, sliding speed and lubricant viscosity. The surface of the lower skewness in negative value or the highel kurtosis tends to have low friction for the same arithmetic mean value. There is optimum arithmetic mean value surface roughness for operating variables have load, speed, etc.

  • PDF