• Title/Summary/Keyword: slider bearing

Search Result 96, Processing Time 0.021 seconds

Head Slider Design Using Approximation Method For Load/Unload Applications (근사화 기법을 이용한 Load/Unload 용 헤드 슬라이더 최적설계)

  • Son, Seok-Ho;Yoon, Sang-Joon;Park, No-Cheol;Park, Young-Pil;Choi, Dong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.169-177
    • /
    • 2006
  • In this study, we present the optimization of a head slider using kriging method in order to reduce lift-off force during unloading process with satisfying reliable flying attitude in steady state. To perform an optimization process efficiently, a simplified lift-off force model, which is a function of air bearing suction force and flying attitudes, is created by kriging method. The EMDIOS, which is the process integration and design optimization software developed by iDOT, is used to automatically wrap the analysis with the optimization and efficiently implements the repetitive works between analyzer and optimizer. An optimization problem is formulated to reduce the lift-off force during unloading process while satisfying the flying attitude in reliable range over the entire recording band and reducing the probability of contact between slider and disk. The simulation result shows that the amplitude of lift-off force of optimized L/UL slider is reduced about 62%, compared with that of initial slider model. It is demonstrated by the dynamics L/UL simulation that the optimum slider incorporated with the suspension is not only smoothly loaded onto disk but also properly unloaded onto the ramp.

  • PDF

A FEM Analysis of Dynamic Behavior for a Slider with Curvature Effect

  • Lim, Sung-Keun;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.44-48
    • /
    • 2004
  • A new type slider with optical components is going to be introduced on market for portalbe and high capacity disk drive, and it will show a great potential for high performance drive in the paper the dynamic behavior and static characteristics of silder for a small form factor optical disk drive have been investigated numerically by an in-house simulation code using FEM. A curvature effect is found when a slider is applied to a relatively small disk, which makes rolling characteristics worse due to the negative pressured generated at the air bearing surface because of the curvature of small disk diameter.

3-Dimensional Equilibrium Position Searching of HDD/Head System using Multi-Dimensional Newton-Raphson Method (다차원 뉴튼-랩슨 방법을 이용한 하드 디스크/헤드 시스템의 3차원 평형위치 검색)

  • Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.203-208
    • /
    • 1995
  • This paper suggests the three dimensional steady state searching techniques of hard disk/head system, which has some skew angle with flexure. In order to analyze the steady state behaviors of magnetic head slider, the localized Knudsen number and the localized bearing numbers are sued. For finding the steady state of magnetic head slider under the pre-loaded condition, I proposed multi-dimensional Newton-Raphson method which traces the equilibrium position of magnetic head slider, which has 3-degrees of freedom, using Jacobian matrix. The multi-dimensional Newton-Raphson method is very efficient technique for finding the steady state position of magnetic head slider because it approaches to the equilibrium position with changing three parameters simultaneously.

  • PDF

The Effects of Slider Design on Thermal Asperity Rejection Capability

  • Choa, Sung-Hoon;Vinod Sharma;Kim, Seong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.281-290
    • /
    • 2001
  • Particle contamination has been an ongoing problem affecting the reliability of the magnetic hard disk drives. Especially the recent use of MR head requires much tighter control of particle contamination due to thermal asperity (TA) phenomenon. In this study, the effects of slider air bearing surface design of TA reduction capability were investigated by manufacturing two types of sliders. Numerical methods were used to simulate the motion of particles in the head/media interface. Experiments were conducted to verify the results predicted by the numerical simulation. Drives were built and exposed to particle contamination using a particle injection chamber, which turned out to be a very simple and reliable particle generation method over conventional aerosol technique. Then the number of TA generated in the drives was recorded and compared. Also the contacts between slider and particles were investigated by acoustic emission study. It was found that a new ABS design, which has aerodynamic U-shaped rail and central flow passage, was beneficial in reducing the particle contamination on the slider.

  • PDF

A Flying State Analysis of HDD Head Slider by Using An Optimization Technique (최적화 기법을 이용한 HDD용 헤드 슬라이더의 부상상태 해석)

  • 윤상준;김존관;최동훈;이재헌;김광식
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.26-34
    • /
    • 1992
  • This paper suggests a method to predict the flying state of the head slider in a hard disk drive (HDD) by using an optimization technique. The modified Reynolds equation for the hydrodynamic lubrication theory under the slip flow condition is used to describe the air-bearing system and a Finite Volume Method (FVM) is applied to solve the equation. Especially, Augmented Lagrange Multiplier (ALM) method is employed to find the minimum flying height, the pitch angle and the roll angle of the slider, which is shown to be faster and more general than the conventional update schemes. By using the proposed method, the variations of the flying state are analyzed as a function of the slider position in the direction of the disk radius for various disk velocities and skew angles.

Steady State Analysis of Magnetic Head Slider at Ultra Low Clearance (마그네틱 헤드 슬라이더의 極小 空氣膜에 대한 定常狀態 解析)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.764-770
    • /
    • 1989
  • This paper analyze the steady state performance of a self-acting air lubricated slider bearing in hard disk/head system. Modified Reynolds' equation is derived from the steady state compressible Navier-Stokes equation, under slip-flow conditions. Finite difference technique and numerical procedure are described by using Newton-Raphson iteration method to slove the non-linear equations. These techniques are applied to conventional slider bearings and the effects of molecular mean free path(MMFP) for a recording surface of hard disk are shown. The calculation procedure developed here, wide applicabilities in practical head design procedures, and converges rapidly.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

Perturbed Finite Element Analysis of Fold Bifurcations in Load/unload Bard Disk Drive Systems (Load/Unload 하드디스크 드라이브 시스템에의 Fold Bifurcations의 교란 유한요소 해석)

  • Hwang Pyung;Khan Polina V.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.177-178
    • /
    • 2005
  • The load/unload behavior of the hard disk drive slider is studied in terms of the air bearing static characteristics. The numerical continuation methods are applied to calculate suspension force - equilibrium position curve. The critical preloads of the femto size slider are analyzed. The hi-stability conditions are depicted on the skew angle - preload diagram. The perturbation method is used to check the stability of the solution branches.

  • PDF

Dynamic Analysis of Sliders in Optical Memory System

  • Gyeong Hwa, Im;Chae Heon, An
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.200-206
    • /
    • 2003
  • Identification method is formulated to evaluate the dynamic characteristics of air bearings under NFR (Near Field Recording) sliders. Using dynamic analysis, impulse responses and frequency response functions of NFR sliders are obtained on numerical non-linear models including rigid motion of slider and fluid motion of air bearing under the slider. System parameters are identified by modal analysis method and instrumental variable method. The identified system parameters of sliders are utilized to evaluate the dynamic characteristics of air bearings.

  • PDF

An Optimization of Air-Lubricated Slider Bearings by Using Reduced Basis Concept (축소기초모델개념을 이용한 공기윤활 슬라이더 베어링의 최적설계)

  • 김동인;윤상준;강태식;정태건;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.52-57
    • /
    • 2001
  • In this paper, the optimum designs of air-bearing surface(ABS) are achieved effectively by using reduced basis concept which can reduce the number of design variables although the design space is distended. Generally, the optimization method is more effective than the trial and error. However, the efficiency of the former is largely dependent on the number of the design variables. In order to reduce the number of design variables and increase the efficiency, reduced basis concept is applied. We can define the desired design as a linear combination of basis designs using this concept. From this optimization method with reduced basis concept, we easily obtain the optimum designs of ABS whose target flying heights are 25, 20, 15 nm.

  • PDF