• Title/Summary/Keyword: sleep waves

Search Result 38, Processing Time 0.029 seconds

Independent Component Analysis(ICA) of Sleep Waves (수면파형의 독립성분분석)

  • Lee, Il-Keun
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.1
    • /
    • pp.67-71
    • /
    • 2001
  • Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.

  • PDF

Customized Realtime Control of Sleep Induction Sound based on Brain Wave Data (뇌파데이터에 기반한 맞춤형 수면유도음향의 실시간제어)

  • Wi, Hyeon Seung;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.204-215
    • /
    • 2020
  • People who have sleep disorders such as insomnia take a long time to get to sleep, namely sleep latency. In order to reduce it, effective stimulations and environments to induce sleep such as ASMR or pink noise are necessary. However these have different effects and preferences for each individual. Therefore customized service and control for the sleep induction will be provide to him/her. In this paper, we proposed SIS control system which provides selectively sound control among various kinds of ASMR and pink noise according to sleep state measured from brain wave data for an individual. In order to verify the effectiveness of the system, we had conducted totally 30 experiments for 5 people, and all EEG data measured from all the people during sleep. An average of 3.7 hours was spent per experiment. In comparison experiments with and without sound control for sleep induction, the latency time was reduced by an average of 8 minutes as well as delta waves and theta waves, which appear only in deep sleep, are increased by 21%.

Fourier and Wavelet Analysis for Detection of Sleep Stage EEG (수면단계 뇌파 검출을 위한 Fourier 와 Wavelet해석)

  • Seo Hee-Don;Kim Min-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.487-494
    • /
    • 2003
  • The sleep stages provides the most basic evidence for diagnosing a variety of sleep diseases. for staging sleep by analysis of EEG(electroencephalogram), it is especially important to detect the characteristic waveforms from EEG. In this paper, sleep EEG signals were analyzed using Fourier transform and continuous wavelet transform as well as discrete wavelet transform. Proposeed system methods. Fourier and wavelet for detecting of important characteristic waves(hump, sleep spindles. K-complex, hill wave, ripple wave) in sleep EEG. Sleep EEG data were analysed using Daubechies wavelet transform method and FFT method. As a result of simulation, we suggest that our neural network system attain high performance in classification of characteristic waves.

Effects of Sleep Habits on EEG Sensory Motor Rhythm in Female College Students (여자 대학생의 수면습관이 감각운동리듬 뇌파에 미치는 영향)

  • Lee, Won-Joon;Choi, Hyun-Ju
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.613-620
    • /
    • 2012
  • To evaluate the effects of sleep habits on the powers of beta waves and the sensory motor rhythm of the electroencephalogram (EEG), female college student subjects were divided into four groups, according to their sleep habits, as follows: GSHG (Good Sleep Habit Group), CSHG (Common Sleep Habit Group: late bedtime), CSDG (Cognitive Sleep Disorder-Delayed Sleep Phase Syndrome Group), and NSDG (Non-cognitive Sleep Disorder-Delayed Sleep Phase Syndrome Group). Brain function was stimulated by reading a book for 3 min in the morning (9~12 am) and the EEG was measured. According to the results, the powers of the beta waves and sensory motor rhythm were not different during the resting period among the four groups. However, during the reading stimulation period, the powers of beta waves and the sensory motor rhythm in the GSHG were significantly greater than in the other groups ($p$ <0.05). Beta powers during stimulation also increased in all brain areas in the GSHG ($p$ <0.05). Interestingly, these were decreased in the frontal and temporal lobes in the CSHG by the reading stimulation ($p$ <0.05). On the other hand, sensory motor rhythm, which represents focusing efficacy, only improved in the GSHG. These results indicate that the brain's focusing function during the reading stimulation was not properly operating in the morning in the female college students who had a delayed bedtime and bad sleep habits.

Pharmacodynamic Interactions of Diazepam and Flumazenil on Cortical Eeg in Rats (흰쥐 대뇌피질의 뇌파에 대한 diazepam 및 flumazenil의 약력학적 상호작용)

  • 이만기
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.242-248
    • /
    • 1999
  • Diazepam, a benzodiazepine (BDZ) agonist, produces sedation and flumazenil, a BDZ antagonist, blocks these actions. The aim of this study was to examine the effects of BDZs on cortical electroencephalogram (EEG) in rats. The recording electrodes were implanted over the frontal and parietal cortices bilaterally, and the reference and ground electrodes over cerebellum under ketamine anesthesia. To assess the effects of diazepam and flumazenil, rats were injected with diazepam (1 mgHg, i.p.) and/or flumazenil ( 1 mg/kg, i.p.), and the EEG was recorded before and after drugs. Normal awake had theta peak in the spectrum and low amplitude waves, while normal sleep showed large amplitude of slow waves. The powers of delta, theta and alpha bands were increased during sleep compared with during awake. Diazepam reduced the mobility of the rat and induced sleep with intermittent fast spindles and large amplitude of slow activity, and it produced broad peak over betaL band and increased the power of gamma band, which were different from EEG patterns in normal sleep. Saline injection awakened rats and abolished fast spindles for a short period about 2-5 min from EEG pattern during diazepam-induced sleep. Flumazenil blocked both diazepam-induced sleep and decreased the slow activities of delta, theta, alpha and betaL, but not of gamma activity for about 10 min or more. This study may indicate that decrease in power of betaL and betaH bands can be used as the measure of central action of benzodiazepines, and that the EEG parameters of benzodiazepines have to be measured without control over the behavioral state by experimenter.

  • PDF

The relationship between sleep physiological signals data and subjective feeling of sleep quality. (수면생리신호와 수면 만족감과의 관계)

  • 이현자;박세진
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.181-185
    • /
    • 2002
  • The purpose of this study was to find out the relationship between sleep physiological signals data and subjective feeling of sleep quality. Sixteen subjective were investigated and they slept on both comfortable mattress and uncomfortable mattress. Information of sleep stage is one of the most important clues for sleep quality. Polysomnography is basically the recording of sleep. The several channels of brain waves (EEG), eyes (EOG), chin movements (EMG) and heart (ECG) were monitored. Sixteen subjects spent 6 days and nights in the laboratory and the data of sleeping 7h for each of 3 nights was analyzed. Percentage of deep sleep (III and IV, sleep efficiency, WASO, stage 1 and subjective feeling of sleep quality were significantly affected with mattress types (comfortable and uncomfortable mattress). When subjects slept on comfortable beds, percentage of deep sleep and sleep efficiency were higher than those of uncomfortable bed. The percentages of wake after sleep onset and stage 1 were lower when subject slept in a comfortable bed. The subjective feeling of sleep quality agreed with the recorded sleep data also.

  • PDF

Rosmarinic Acid Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep through the Activation of GABAA-ergic Systems

  • Kwon, Yeong Ok;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • It has been known that RA, one of major constituents of Perilla frutescens which has been used as a traditional folk remedy for sedation in oriental countries, shows the anxiolytic-like and sedative effects. This study was performed to know whether RA may enhance pentobarbital-induced sleep through ${\gamma}-aminobutyric$ acid $(GABA)_A-ergic$ systems in rodents. RA (0.5, 1.0 and 2.0 mg/kg, p.o.) reduced the locomotor activity in mice. RA decreased sleep latency and increased the total sleep time in pentobarbital (42 mg/kg, i.p.)-induced sleeping mice. RA also increased sleeping time and number of falling sleep mice after treatment with sub-hypnotic pentobarbital (28 mg/kg, i.p.). In electroencephalogram (EEG) recording, RA (2.0 mg/kg) not only decreased the counts of sleep/wake cycles and REM sleep, but also increased the total and NREM sleep in rats. The power density of NREM sleep showed the increase in ${\delta}-waves$ and the decrease in ${\alpha}-waves$. On the other hand, RA (0.1, 1.0 and $10{\mu}g/ml$) increased intracellular $Cl^-$ influx in the primary cultured hypothalamic cells of rats. RA (p.o.) increased the protein expression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptors subunits except ${\beta}1$ subunit. In conclusion, RA augmented pentobarbital-induced sleeping behaviors through $GABA_A-ergic$ transmission. Thus, it is suggested that RA may be useful for the treatment of insomnia.

Automatic Detection of Stage 1 Sleep Utilizing Simultaneous Analyses of EEG Spectrum and Slow Eye Movement (느린 안구 운동(SEM)과 뇌파의 스펙트럼 동시 분석을 이용한 1단계 수면탐지)

  • Shin, Hong-Beom;Han, Jong-Hee;Jeong, Do-Un;Park, Kwang-Suk
    • Sleep Medicine and Psychophysiology
    • /
    • v.10 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • Objectives: Stage 1 sleep provides important information regarding interpretation of nocturnal polysomnography, particularly sleep onset. It is a short transition period from wakeful consciousness to sleep. The lack of prominent sleep events characterizing stage 1 sleep is a major obstacle in automatic sleep stage scoring. In this study, utilization of simultaneous EEG and EOG processing and analyses to detect stage 1 sleep automatically were attempted. Methods: Relative powers of the alpha waves and the theta waves were calculated from spectral estimation. A relative power of alpha waves less than 50% or relative power of theta waves more than 23% was regarded as stage 1 sleep. SEM(slow eye movement) was defined as the duration of both-eye movement ranging from 1.5 to 4 seconds, and was also regarded as stage 1 sleep. If one of these three criteria was met, the epoch was regarded as stage 1 sleep. Results were compared to the manual rating results done by two polysomnography experts. Results: A total of 169 epochs were analyzed. The agreement rate for stage 1 sleep between automatic detection and manual scoring was 79.3% and Cohen’s Kappa was 0.586 (p<0.01). A significant portion (32%) of automatically detected stage 1 sleep included SEM. Conclusion: Generally, digitally-scored sleep staging shows accuracy up to 70%. Considering potential difficulty in stage 1 sleep scoring, accuracy of 79.3% in this study seems to be strong enough. Simultaneous analysis of EOG differentiates this study from previous ones which mainly depended on EEG analysis. The issue of close relationship between SEM and stage 1 sleep raised by Kinnari remains a valid one in this study.

  • PDF

Analysis of the health effects of groundwater dowsing (지하수 수맥 파가 건강에 미치는 영향 분석)

  • Jung, Jae-Sung;Kim, Ki Chan
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.189-202
    • /
    • 2024
  • It is not the water veins themselves that are distributed on Earth that are harmful, but the water vein waves generated from the water veins are harmful to human health. The natural frequency of the Earth is 7.83 Hz, but in order to sleep deeply, you must go down to a delta wave of 2 to 3.99 Hz, which is lower than this frequency, to achieve the deepest sleep and maintain your health. However, if you sleep in a place with dowsing waves, the dowsing waves interfere with your brain waves, making it difficult to sleep well, and you may have nightmares. Even when you wake up, your body is not refreshed and your fatigue does not go away, so you feel tired and tired easily. If this phenomenon continues, the body's resistance decreases and immunity weakens, which can eventually cause illness and cause various diseases, which can harm one's health. In other words, the safest and most effective way to deal with water veins is to avoid places with water veins and simply change your sleeping position to a place without water veins, and you can live a healthy and happy life through examples.

Customized Eyelid Warming Control Technique Using EEG Data in a Warming Mask for Sleep Induction (수면유도용 온열안대를 위한 뇌파기반의 맞춤형 온열제어 기법)

  • Han, Hyegyeong;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1149-1160
    • /
    • 2021
  • Lack of sleep time increases risks of fatigue, hypomnesis, decreased emotional stability, indigestion, and dementia. The risks can be reduced by providing eyelid-warming, inducing sleep and improving sleep quality. However, effective warming temperature to an person varies depending on physical condition and the individual. The various types of frequencies can be identified in brain wave from a person and amount of frequencies is also changed continuously before and after sleep. Therefore we can identify the user's sleep stage with brain wave, namely EEG. Effective sleep induction is possible if warming temperature to a person is controlled based on EEG. In this paper, we propose customized warming control techniques based on EEG for a efficient and effective sleep induction. As an experiment, sleep induction effects of standard sleep mask and customized temperature control techniques sleep mask are compared. EEG data and warming temperature were measured in 100 experiments. At customized warming control techniques, experiments showed that the ratio of alpha and theta waves increased by 3.21%p and the time to sleep decreased by 85 seconds. It will contribute to effective sleep induction and performance verification methods in customized sleep mask systems.