• Title/Summary/Keyword: slag blended concrete

Search Result 127, Processing Time 0.018 seconds

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water (해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar

  • Nasir, Muhammad;Johari, Megat Azmi Megat;Yusuf, Moruf Olalekan;Maslehuddin, Mohammed;Al-Harthi, Mamdouh A.
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.403-416
    • /
    • 2020
  • This study investigated the effect of alkaline activators - NaOHaq (NH) (NH: 0-16 M) and Na2SiO3aq (NS) (NS/NH: 0-3.5) in the synthesis of silico-manganese fume (SMF) and ground blast furnace slag (BFS) blended alkali-activated mortar (AASB). The use of individual activator was ineffective in producing AASB of sufficient fresh and hardened properties, compared to the synergy of both activators. This may be attributed to incomplete dissolution and condensation of oligomers required for gelation of the binder. An inverse relationship was noted among the fresh properties and the NH concentration or NS/NH ratio. This was influenced by the dissolution and condensation of silicate monomers under polymerization process. The maximum 28-day strength of ~45 MPa, setting time of 60 min and flow of 182 mm was obtained with the use of combined activators (10M-NH and NS/NH=2.5). The combined activators at NS/10M-NH=2.5 constituted SiO2/Na2O, H2O/Na2O and H2O/SiO2 molar ratio of 1.61, 17.33 and 10.77, respectively. This facilitated the formation of C-S-H, C/K-A-S-H and C-Mn-S-H in the framework together with an increase in the crystallinity due to more silicate re-organization within the aluminosilicate chain. On comparison of the high concentrated with mild alkali synthesized product, it revealed that the concentration of OH- and Si monomers together with alkali metals influenced the dissolution of precursors and embedment of the constituent elements in the polymeric matrix. These factors eventually contributed to the microstructural densification of the mortar prepared with NS/10M-NH=2.5 thereby enhancing the compressive strength.

Properties of Low Carbon Type Hydraulic Cement Binder Using Waste Recycle Powder (무기계 재생원료를 사용한 저탄소형 수경성 시멘트 결합재의 특성)

  • Song, Hun;Shin, Hyeon-Uk;Tae, Sung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Cement is a basic material for the construction industry and it requires high temperature sintering when manufacturing cement. $CO_2$ emissions from raw materials and fuels are recognized as new environmental problems and efforts are underway to reduce them. Techniques for reducing $CO_2$ in concrete are also recommended to use blended cement such as blast furnace slag or fly ash. In addition, the construction waste generated in the dismantling of concrete structures is recognized as another environmental problem. Thus, various methods are being implemented to increase the recycling rate. The purpose of this study is to utilize the inorganic raw materials generated during the dismantling of the structure as a raw material for the low carbon type cement binder. Such as, waste concrete powder, waste cement block, waste clay brick and waste textile as raw materials for low carbon type cement binder. From the research results, low carbon type cement binder was manufactured from the raw material composition of waste concrete powder, waste cement block, waste clay brick and waste textile.

Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete (콘크리트의 화학적 특성을 고려한 철근 부식 임계 염소이온 농도)

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.75-84
    • /
    • 2009
  • The present study assesses the chloride threshold level for corrosion of steel in concrete by examining the properties of four different binders used for blended concrete in terms of chloride binding, buffering of cement matrix to a pH fall and the corrosion behaviour. As binders, ordinary Portland cement (OPC), 30% pulverised fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF) were used in a concrete mix. Testing for chloride binding was carried out using the water extraction method, the buffering of cement matrix was assessed by measuring the resistance to an artificial acidification of nitric acid, and the corrosion rate of steel in mortar with chlorides in cast was measured at 28 days using an anodic polarisation technique. Results show that the chloride binding capacity was much affected by $C_{3}A$ content and physical adsorption, and its order was 60% GGBS>30% PFA>OPC>10% SF. The buffering of cement matrix to a pH fall was varied with binder type and given values of the pH. From the result of corrosion test, it was found that the chloride threshold ranged 1.03, 0.65, 0.45 and 0.98% by weight of cement for OPC, 30% PFA, 60% GGBS and 10% SF respectively, assuming that corrosion starts at the corrosion rate of $0.1-0.2{\mu}A/cm^{2}$. The mole ratio of [$Cl^{-}$]:[$H^{+}$], as a new presentation of the chloride threshold, indicated the value of 0.008-0.009, irrespective of binder, which would be indicative of the inhibitive characteristic of binder.

Evaluation on the Sulfate Attack Resistance of Cement Mortars with Different Exposure Conditions (노출조건에 따른 시멘트 모르타르의 황산염침식 저항성 평가)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.427-435
    • /
    • 2012
  • In order to evaluate the effects of exposure conditions on the resistance to sulfate attack of normal and blended cement mortars, several mechanical characteristics of the mortars such as expansion, strength and bulk density were regularly monitored for 52 cycles under sodium sulfate attack. The mortar specimens were exposed to 3 different types of exposure conditions; 1) continuous full immersion(Exposure A), continuous half-immersion(Exposure B) and cyclic wetting-drying(Exposure C). Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens subjected to Exposure B, showing the wide cracks in the portions where attacking solution is adjacent to air. Additionally, the beneficial effect of ground granulated blast-furnace slag and silica fume was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability and densified structure. Thus, it is suggested that when concrete made with normal cement is exposed to sulfate environment, proper considerations on the exposure conditions should be taken.

Study on the Evaluation CO2 Emission-Absorption of Concrete in the View of Carbonation (콘크리트의 탄산화 관점에서 CO2 배출량-흡수량 평가에 관한 연구)

  • Lee, Sang-Hyun;Lee, Sung-Bok;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.85-92
    • /
    • 2009
  • A concrete is considered unfriendly-environmental material because it uses cement which emits much $CO_2$ during producing process. However, a concrete absorbs $CO_2$ through carbonation process during service life. In this paper how much concrete absorbs $CO_2$ through carbonation was calculated using 1) concentration of carbonatable substances in concrete, 2) carbonated volume of concrete, 3) molecular weight of $CO_2$ based on references and the method was proposed. $CO_2$ emission from producing $1m^3$ concrete was calculated based on $CO_2$ emission datum of materials used in concrete. From using these methods that calculate $CO_2$ emission and absorption of concrete, assessment of $CO_2$ emission-absorption against a real apartment was conducted by subtracting absorption $CO_2$ according to service life from $CO_2$ emission in the process of making concrete. As a result, a ratio of absorption over emission of $CO_2$ through concrete carbonation according to service life 40, 60, 80 years was assessed about 3.65, 4.47, 5.18%. An objective of this study is to propose how to calculate emission - absorption of $CO_2$ from producing and using concrete. Although the result value, emission - absorption of $CO_2$, is 5.18% very low when the service life of an apartment is 80years, the value can be improved by reducing emission from using blended cement such as blast furnace slag or increasing replacement ratio of cement and increasing carbonated volume of concrete from expanding service life of a building. This study may be useful when $CO_2$ emission - absorption of concrete is evaluated in the further study.

Characterization of Rheology on the Multi-Ingredients Paste Systems Mixed with Mineral Admixtures (광물혼화재가 혼합된 다성분 페이스트 시스템의 레올로지 특성 평가)

  • Park Tae-Hyo;Noh Myung-Hyun;Park Choon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.241-248
    • /
    • 2004
  • The rheological properties of cement paste system mixed with mineral admixtures (MAs) used to increase the strength and improve durability and fluidity of concrete were investigated. And cement paste systems were designed as one-, two- and three-ingredients blended paste systems. The rheological properties of paste systems were assessed by Rotovisco RT 20 rheometer (Hakke inc.) having a cylindrical serrated spindle. The rheological properties of one-ingredient paste systems were improved with increasing the dosage of superplasticizer. For two-ingredients paste systems, as increasing the replacement ratio of blast furnace slag (BFS) and fly ash (FA), the yield stress and plastic viscosity were decreased compared with non-replacement. In the ordinary portland cement (OPC)-silica fume (SF) paste systems, in accordance with an increase in the replacement ratio of SF, the yield stress and plastic viscosity were increased steeply. For three-ingredients paste systems, both OPC-BFS-SF and OPC-FA-SF paste systems, the rheological properties were improved compared with the only replacement of SF. In the case of both two-and three-ingredients paste systems, the rheological properties using BFS were improved more than FA.