• Title/Summary/Keyword: slab structure

Search Result 593, Processing Time 0.029 seconds

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

A Study on the Sound Insulation Performance Elevation of Floor Structure that use Rubber chip in Apartment House (고무칩을 이용한 공동주택 바닥구조의 차음성능 향상에 관한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.237-332
    • /
    • 2002
  • We constructed ceiling structure and floor structure for elevation of sound insulation performance of concrete slab of apartment house. And, we wished to measure heavy floor impact sound level and light floor impact sound level of these structure. As the result, light floor impact sound level interception performance of concrete slab was measured by thing that construction work of gypsum baud is important. Heavy floor impact sound level interception performance was measured by thing that it is effective that construct to thickness about 30 millimeters on concrete Slav. It was measured effectively that heavy floor impact sound level interception performance constructs rubber chip to thickness about 30 millimeters on concrete Slav.

  • PDF

Stopper equipped with a Low Vibration Floating Slab System Design (스토퍼가 장착된 저진동 플로팅 슬래브 시스템 설계)

  • Park, Sung-Jae;Ma, Chang-Nam;Park, Myung-Gyun;Lee, Du-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.753-756
    • /
    • 2011
  • Recently the construction of railway sections passing the central area of cities and stations under railway lines are increasing, and then it is urgently required to take the countermeasures against the railway vibration and the second-phase noise radiated from it. The most efficient countermeasure, out of technologies developed up to now, is the floating slab track which is the track system isolated from the sub-structure by springs. In other countries, the source technologies for anti-vibration design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the system design technology and technologies for key components are not yet developed, the foreign system are being introduced without any adjustment, and the key component, vibration isolator, depends on imports. In this study, analysis on floating slab system installed rubber mat and stopper is carried for the examination on the safety of floating slab system.

  • PDF

Assessment for Vertical Earth Pressure of Roadbeds Applied to Slab Track Structure by Real-scale Loading Tests (실대형 재하시험을 통한 슬래브궤도 노반의 연직토압 평가)

  • Lee, Tae-Hee;Lee, Jin-Wook;Won, Sang-Soo;Lee, Seong-Hyeok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2057-2063
    • /
    • 2011
  • Recently, concrete slab track is mostly used to satisfy requirements for safety of high-speed train operation and economical efficiency of maintenance. Due to structural characteristics of ballast track structures, roadbeds under the ballast experience a state of high stress. In case of slab track structures, however, its roadbeds place on a condition of low stress less than roadbeds of ballast track structures as increasing of the loading area. In this study, vertical earth pressure under slab track structures was investigated through real-scale loading tests and theoretical analysis to compare with each other.

  • PDF

Analytical Study on I-beam of I-beam Grated Concrete slab (I 형강 격자 상판의 주부재 I형강에 대한 해석적 연구)

  • 박창규;김용곤;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.437-442
    • /
    • 2001
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. In particular, it is known that due to repeated overburden vehicle there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory. and will be preassembled into the Panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself through static and fatigue test with rational numerical analysis Finally this research is to suggest reformed I-beam through the numerical analysis.

  • PDF

An Application of the Mass Concrete Using Ternary Blended Cement (3성분계 시멘트를 사용한 매스콘크리트의 시공사례)

  • 권영호;하재담;전성근;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1229-1234
    • /
    • 2001
  • The bottom slab of Inchon LNG in-ground #213 tank is designed as a massive structure witch has a large depth and section. The purpose of this study is to determine the optimum mix design having good workability and low hydration heat for bottom slab concrete and to control the actual concrete quality in site. For this purpose, we select the optimum mix design used ternary blended cement(furnace slag cement+fly ash) and design factors. As test results of actual application, we have finish placing the bottom slab concrete of 23,180㎥ during 68hours with good success and obtain the good quality of fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat in actual data. All test results are satisfied with our specifications for bottom slab concrete and we cut costs as the use of ternary blended cement and the reduction of placing hours.

  • PDF

Fracture Analysis of High Carbon Steel Slabs in a Furnace (가열로 내부에서 발생하는 고탄소강 주편의 판파단 원인 분석)

  • Kim, Y.J.;Jang, M.J.;Asghari-Rad, Peyman;Jung, Y.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2020
  • In general, the cause of slab cracking during heat treatment has been analyzed with focus on processing conditions. However, in the present work, the cause of cracking is analyzed based on the microstructural evolution during heat treatment. The microstructural analysis indicates that the structure of the slab consists of three main regions as the top, quarter, and center parts. The tensile properties are investigated in each region of the slab in the temperature range from 25 to 350 ℃. Results demonstrate that the cracking is mainly attributed to the thermal stress and specific morphology of the microstructure. It is proposed that the cracking during the heat treatment is related to the presence of inclusion at the ferrite phase which is located at the boundary of pearlite grains.

Stiffness Reduction Factor for Post-Tensioned Flat Plate Slabs (포스트 텐션 플랫 플레이트 해석을 위한 강성감소계수)

  • Park, Young-Mi;Park, Jin-Ah;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.125-126
    • /
    • 2009
  • Effective beam width model (EBWM) has been used for analysis of post-tensioned (PT) flat plate slab frames under lateral loads. For analyzing PT flat plate slab structure under lateral loads with good precision, reduction in slab stiffness has to be accurately estimated for Effective beam width model(EBWM). For this purpose, this study collected test results of PT flat plate system conducted by former researches. And this study reduced the width of slab so that the stiffness of the EBWM converged into the lateral stiffness of each test specimens by trial and error. By conducting nonlinear regression analysis, an equation for calculating stiffness reduction factor for the PT flat plate is proposed.

  • PDF