• Title/Summary/Keyword: slab module

Search Result 20, Processing Time 0.029 seconds

Development and Characterization of a 400-W Slab-type Nd:YAG Gain Module

  • Cha, Yong-Ho;Lee, Sungman;Lim, Gwon;Baik, Sung-Hoon;Kwon, Sung-Ok;Cha, Byung-Heon;Lee, Jung-Hwan;Kang, Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-56
    • /
    • 2012
  • We have developed a slab-type Nd:YAG gain module based on the techniques of conduction cooling and end pumping. The Nd:YAG slab is end-capped on both ends by undoped pure YAG and is pumped through the end-caps by stacked arrays of laser diode bars. The slab's surfaces of total internal reflection are in contact on both sides with microchannel cooling blocks which are cooled by water circulation. The power oscillator based on the gain module generates more than 400 W at 1-kW pumping with a slope efficiency of 55%. The small-signal gain of the gain module is 10 in a single zig-zag pass, and the amplified beam shows a near diffraction-limited beam quality.

Detailed Analysis of Vertical Connector in Modular Roadway Slab Under Temperature and Lifting Loading (온도하중과 인양하중에 영향을 받는 모듈러 도로 슬래브 수직연결부의 상세해석)

  • Kim, WooSeok;Nam, Jeonghee;Min, Geunhyeong;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.509-517
    • /
    • 2016
  • In terms of bridge construction, the concrete deck slab is weak members compared to beam members of the bridge supports. Deck slabs must be sound to support and distribute vehicle loads. If slabs are not enough to support the loads, it should be replaced. Bridge deck replacement has been an important industry over the world since the construction is simplified to shorten construction time and to save construction costs. Slab module provides a quickly, easily and reliably construction method in order to avoid high cost and minimum traffic disruption. in addition, slab module shows high reliability since they are factory products. However, slab module should be considered in the performance under various loads. In this study, structural analysis is performed to evaluate the performance of slab module under vehicle loads and temperature loads. Spiral rebar is also utilized around the vertical joints to improve the structural integrity under the lifting loads. In order to confirm the weak area of slab module for the lift condition, numerical analysis has been performed.

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.

Economic Analysis of Neighborhood Facility using the U-flanged Truss Hybrid Beam (U-플랜지 트러스 복합보를 사용한 근린생활시설의 경제성 분석)

  • Oh, Myoung Ho;Park, Sung Jin;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, In order to apply the U-flanged truss hybrid beam to the actual construction site, the structural design of the basic module of the middle and low-rise neighborhood living facilities was performed according to the Korea Design Standard, and the construction cost and construction period were compared with the traditional reinforced concrete structure system. As a result of analyzing the construction cost for the basic module, if the U-flanged truss hybrid beam and D-Deck slab system are used, the construction cost can be reduced by 86% compared to the traditional reinforced concrete structure system. In addition, as a result of analyzing the construction period for a floor area of 1,000m2, using the U-flanged truss hybrid beam and D-Deck slab system can save 2.0days in construction period compared to the traditional reinforced concrete structure system. Therefore, the U-flange truss hybrid beam can secure sufficient economic feasibility compared to the existing reinforced concrete method in terms of cost reduction and shortening of construction period.

Development of Web-based RC Slab Design support system (WEB을 기반으로한 RC 슬래브설계 자동화 시스템 개발)

  • Lee Jin Wook;Lho Byeong Cheol;Kim Jeong hoon;Choi Sang Reung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.369-372
    • /
    • 2004
  • The design process of RC Slab includes multiple procedures such as structural analysis, member design, the production of calculation sheets, CAD, and itemized statements of quantities. The objective of this study is to develope an integrated design system that includes all the steps needed for RC Slab design, and as a result, to improve the quality and efficiency of the design process. In this study, the design steps are divided into structural modules and database, and each module and database is systematically combined for the complete design process. The developed design system is based on Web environment. Therefore it can be used in real time and reduces the design work time and space.

  • PDF

Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads (콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증)

  • Nam, Jeong-Hee;Kim, Woo Seok;Kim, Ki Hyun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck (냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구)

  • Lel, Xu;Kim, Wonuk;Lee, Sang-Ryoul;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.

Development of a Prestack Generalized-Screen Migration Module for Vertical Transversely Isotropic Media (횡적등방성 매질에 적용 가능한 겹쌓기 전 Generalized-Screen 참반사 보정 모듈 개발)

  • Shin, Sungil;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The one-way wave equation migration is much more computationally efficient comparing with reverse time migration and it can provide better image than the migration algorithm based on the ray theory. We have developed the prestack depth migration module adopting (GS) propagator designed for vertical transverse isotropic media. Since GS propagator considers the higher-order term by expanding the Taylor series of the vertical slowness in the thin slab of the phase-screen propagator, the GS migration can offer more correct image for the complex subsurface with large lateral velocity variation or steep dip. To verify the validity of the developed GS migration module, we analyzed the accuracy with the order of the GS propagator for VTI media (GSVTI propagator) and confirmed that the accuracy of the wavefield propagation with the wide angles increases as the order of the GS propagator increases. Using the synthetic seismic data, we compared the migration results obtained from the isotropic GS migration module with the anisotropic GS migration module. The results show that the anisotropic GS migration provides better images and the improvement is more evident on steeply dipping structures and in a strongly anisotropic medium.

An Approach to Model Ground-Coupled Building Foundation for Energy Simulation (Ground-Coupled 바닥구조체의 열전달 모델링)

  • 임병찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.658-666
    • /
    • 2004
  • In this paper, a two-dimensional transient ground-coupled numerical model for slab-on-grade foundation is developed and integrated into EnergyPlus. A validation analysis is first presented to ensure that for the developed building foundation heat transfer module is properly implemented within EnergyPlus. Then, the predictions from the developed model are compared to those obtained from the simplified building foundation model currently used in EnergyPlus. The results show that the developed foundation heat transfer module accounts better for the effects of the ground thermal mass attributed to the ground than the simplified foundation model currently used in EnergyPlus.

The Economic Analysis of Underground Parking Lot Frames adopting 8-Bay Parking Modules (8-Bay 주차모듈을 적용한 아파트 지하주차장 구조의 경제성 분석)

  • Yu, Yongsin;Yoon, Bohyung;Kim, Minsu;Kim, Taewan;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2019
  • On 30 June, 2017, the Ministry of Land, Infrastructure, and Transport announced the minimum size of parking section will be expanded in parking lots. The expansion of parking section could lead to increase in apartment prices because of increase in total area of the parking lots. It is necessary to adjust the column spacing and number in the parking lots and to apply the 8-Bay long-span parking module with good parking efficiency. According to the study, the construction cost of the 6-Bay module and 8-Bay module was almost the same. But The 8-Bay module was more economical than the 6-Bay module because of the reduction in total area of 8-Bay multi-moduel. The Result of construction cost of 8-Bay modules, Removal Deck-plate RC system was most economical. While the construction cost of PC system was higher due to increase in volume of the member, it would ensure sufficient economy by reducing the girder height to apply a pre-stress method. Also, the construction cost of hollow slab system was the highest. But it could be used as the underground parking lots for apartment, because it had the lowest cost per square meter. This Study has a academic significance by proving the applicability of the 8-Bay Module to underground parking lot of apartment. And it is expected that this study will be used as basic data to derive optimal construction method that applies 8-Bay Module.