The visual sensing of human hands plays an important part in many man-machine interaction/interface systems. Most existing visionbased hand detection techniques depend on the color cues of human skin. The RGB color image from a vision sensor is often transformed to another color space as a preprocessing of hand detection because the color space transformation is assumed to increase the detection accuracy. However, the actual effect of color space transformation has not been well investigated in literature. This paper discusses a comparative evaluation of the pixel classification performance of hand skin detection in four widely used color spaces; RGB, YIQ, HSV, and normalized rgb. The experimental results indicate that using the normalized red-green color values is the most reliable under different backgrounds, lighting conditions, individuals, and hand postures. The nonlinear classification of pixel colors by the use of a multilayer neural network is also proposed to improve the detection accuracy.
최근 인터넷에 유통되는 유해영상이 급증하면서 이들을 자동으로 차단하는 컴퓨터비전 기술의 연구가 활발히 이루어지고 있다. 본 논문에서는 피부색상을 이용한 유해영상 분류도구를 연구 및 개발한다. 제안하는 분류도구는 2단계로 구성되며, 1단계에서는 피부색 분류기를 이용하여 입력영상에서 피부색 영역을 검출하고, 2단계에서는 영역특징 분류기를 이용하여 앞서 검출된 피부색 영역의 비율과 위치 특징을 무해 또는 유해로 분류한다. 피부색 분류기는 히스토그램 모델에 기반하여 무해영상과 유해영상의 RGB 값으로 학습되며, 영역특징 분류기는 SVM(Support Vector Machine)에 기반하여 영상의 29개 지역의 피부색 비율로 학습된다. 실험결과 제안하는 분류기는 92.80%의 검출율(Detection Rate)과 6.73%의 양성오류율(False Positive Rate)을 나타내었다.
많은 연구 데모용 프로그램들과 상업적 응용물들이 얼굴 검출과 얼굴 인식 시스템들을 개발하기 위해 시도되고 있다. 인간의 얼굴 검출은 접근 제어 및 비디오 감시 시스템, 휴먼 컴퓨터 인터페이스, 신원 인증 등과 같은 많은 응용 프로그램들에 중요한 역할을 한다. 일반적으로 스킨 영역 분할 후 배경과 연결된 얼굴, 스킨 칼라로 인한 연결된 얼굴들, 여러 개의 작은 부분들로 분할된 하나의 얼굴과 같은 몇 가지 특별한 문제점들이 있다. 많은 얼굴 검출 기법들이 첫 번째 와 두 번째 문제를 해결하도록 허락되어진다. 그러나 세 번째 문제에서 다른 조명 효과들로 인해서 여러 영역들로 분할된 하나의 얼굴이 검출되어지는 것은 쉽지가 않다. 그러므로 우리는 기존 영역 분할 알고리즘은 이용될 수 없기 때문에 이 문제를 해결하기 위해 효율적인 수정된 스킨 분할 알고리즘을 제안한다. 본 알고리즘은 전체 영상에 대해 피부 영역을 검출한 후 피부 분할 알고리즘을 사용하여 얼굴 후보 영역들을 생성한다. 각 얼굴 피부 후보 영역에 대해 그림자 등의 조명 효과로 인해 한 명의 얼굴이 여러 영역으로 분할되는 경우를 처리하기 위해 동차적 영역간의 인접성을 활용하여 하나의 큰 영역으로 만드는 병합 작업을 시도하였다. 다른 크기의 얼굴 검출을 위해 다양한 가변 크기의 탐색 윈도우와 선택된 각 얼굴 후보 영역에 얼굴이 존재하는지를 판단하기 위해 역전파 알고리즘에 기반한 얼굴 검출 분류기를 사용하였다.
In this paper, we propose a new algorithm to detect human faces for controling a camera used in video conference. We model the distribution of skin color and set up the standard skin color in YIQ color space. An input video frame image is segmented into skin and non-skin segments by comparing the standard skin color and each pixels in the input video frame. Then, shape filler is applied to select face segments from skin segments. Our algorithm detects human faces in real time to control a camera to capture a human face with a proper size and position.
Hand gesture recognition is an important area of research in the field of Human Computer Interaction (HCI). The geometric attributes of the hand play an important role in hand shape reconstruction and gesture recognition. That said, fingertips are one of the important attributes for the detection of hand gestures and can provide valuable information from hand images. Many methods are available in scientific literature for fingertips detection with an open hand but very poor results are available for fingertips detection when the hand is closed. This paper presents a new method for the detection of fingertips in a closed hand using the corner detection method and an advanced edge detection algorithm. It is important to note that the skin color segmentation methodology did not work for fingertips detection in a closed hand. Thus the proposed method applied Gabor filter techniques for the detection of edges and then applied the corner detection algorithm for the detection of fingertips through the edges. To check the accuracy of the method, this method was tested on a vast number of images taken with a webcam. The method resulted in a higher accuracy rate of detections from the images. The method was further implemented on video for testing its validity on real time image capturing. These closed hand fingertips detection would help in controlling an electro-mechanical robotic hand via hand gesture in a natural way.
Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Cho, In-Sook;Ju, Ho-Jong;Jeong, Rae-Dong
식물병연구
/
제27권2호
/
pp.79-83
/
2021
The aim of the present study was to develop a sensitive and specific detection method for the rapid detection of apple scar skin viroid (ASSVd) in apple leaves. The resulting reverse transcription recombinase polymerase amplification (RT-RPA) assay can be completed in 10 min at 42℃, is 10 times more sensitive than conventional reverse transcription polymerase chain reaction, and can specifically amplify ASSVd without any cross-reactivity with other common apple viruses, including apple stem grooving virus, apple stem pitting virus, and apple chlorotic leaf spot virus. The reliability of the RT-RPA assay was assessed, and the findings suggested that it can be successfully utilized to detect ASSVd in field-collected samples. The RT-RPA assay developed in the present study provides a potentially valuable means for improving the detection of ASSVd in viroid-free certification programs, especially in resource-limited conditions.
피부색 검출은 피부색과 비피부색에 대한 분류기가 사용되며, 분류 성능이 높은 분류기가 필요하다. 기존의 피부색 검출을 위한 분류기들은 대부분 하나의 칼라 모델을 사용하고 있다. 그러나 칼라 모델에 따라 피부색의 분포 특성이 다르기 때문에 하나 이상의 칼라 모델을 사용함으로써 분류 성능을 높일 수 있다. MLP(Multi Layer Perceptron)는 다른 분류기보다 적은 파라미터를 사용하면서 좋은 분류 성능을 보이고 있다. 하지만 두 개의 칼라 모델을 사용할 경우 MLP의 입력 차원이 증가되기 때문의 파라미터 수가 증가되는 문제가 발생하게 되며, 파라미터 수의 증가는 MLP의 학습 시간이 증가되는 원인이 된다. 따라서 본 논문에서는 두 칼라 모델의 구성 성분을 조합함으로써 피부색과 비피부색의 분류 성능을 향상시키고, 적은 수의 파라미터가 사용된 피부색 검출 방법을 제안한다. 제안한 부분 연결 MLP는 각 칼라 모델에 따라 연결 강도를 부분적으로 연결함으로써 연결 강도의 수를 감소 시켰으며, 각 부분 네트워크에 서로 다른 칼라 모델의 특성을 학습시킴으로써 분류율을 향상시킬 수 있다. 실험 결과 제안한 부분연결 MLP를 RGB와 CbCr 칼라 정보로 구성했을 때 91.8%의 분류율을 달성하였다.
Automatic human face detection in a complex background is one of the difficult problems. In this paper, we propose an effective and robust automatic face detection approach that can locate the face region in natural scene images when the system is used as a pre-processor of a face recognition system . We use two natural and powerful visual cues, the skin color and the eyes. In the first step of the proposed system, the method based on the human skin color space by selecting flesh tone regions using normalized r-g space in color images. In the next step, we extract eye features by calculating moments and using geometrical face model. Experimental results demonstrate that the approach can efficiently detect human faces and satisfactory deal with the problems caused by bad lighting condition, skew face orientation.
본 논문에서는 칼라 이미지에서 색상 요소를 기초로 하여 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안한다. 얼굴 영역을 추출하기 위하여 일반적인 얼굴색상분포를 이용하여 색상변환을 하였다. 얼굴 특성요소를 찾기 위하여 윤곽선검출을 이용하였다. 얼굴영역의 상단부분에서 눈의 요소를 찾고, 눈과 입의 지정학적 위치를 이용하여 입의 후보영역을 지정하고 입을 찾도록 하였다. 검색영역을 좁혀 계산량을 줄임으로서 탐색시간을 줄일 수 있고, 일반적인 얼굴색상분포를 이용하여 얼굴 영역을 검출함으로서 얼굴표정, 얼굴색변화, 기울짐에 대해서도 얼굴영역을 검출할 수 있었다.
Human face detection plays an important role in variable applications. A face detection method based on skin-color information and facial feature in color images is proposed in this paper. First, the RGB color space is transformed to YCbCr space and only the skin region is extracted with the skin color information. And then, the candidate where face is likely to exist is selected after labeling processing. Finally, we detect facial features in face candidate. The experimental results show that the method proposed here is effective.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.