• Title/Summary/Keyword: skin crack

Search Result 22, Processing Time 0.016 seconds

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain (인장변형에 따른 그래핀복합 카본블랙전극의 저항변화연구)

  • Lee, T.W.;Lee, H.S.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • Stretchable electrode materials are focused to apply to flexible device such as e-skin and wearable computer. Used as a flexible electrode, increase in electrical resistance should be minimalized under physical strain as bend, stretch and twist. Carbon black is one of candidates, for it has many advantages of low cost, simple processing, and especially reduction in resistivity with stretching. However electrical conductivity of carbon black is relatively low to be used for electrodes. Instead graphene is one of the promising electronic materials which have great electrical conductivity and flexibility. So it is expected that graphene added carbon black may be proper to be used for stretchable electrode. In this study, under stretching electrical property of graphene added carbon black composite electrode was investigated. Mechanical stretching induced cracks in electrode which means breakage of conductive path. However stretching induced aligned graphene enhanced connectivity of carbon fillers and maintained conductive network. Above all, electronic structure of carbon electrode was changed to conduct electrons effectively under stretching by adding graphene. In conclusion, an addition of graphene gives potential of carbon black composite as a stretchable electrode.