Communications for Statistical Applications and Methods
/
제22권4호
/
pp.361-375
/
2015
A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical standardization using the scaled residuals of the observations. First, we consider the statistics that take the skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation; consequently, the null distributions of the statistics from the transformed ones are quite well approximated to asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test.
Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.
Communications for Statistical Applications and Methods
/
제27권5호
/
pp.501-510
/
2020
Mardia (Biometrika, 57, 519-530, 1970) defined measures of multivariate skewness and kurtosis. Based on these measures, omnibus test statistics of multivariate normality are proposed using normalizing transformations. The transformations we consider are normal approximation and a Wilson-Hilferty transformation. The normalizing transformation proposed by Enomoto et al. (Communications in Statistics-Simulation and Computation, 49, 684-698, 2019) for the Mardia's kurtosis is also considered. A comparison of power is conducted by a simulation study. As a result, sum of squares of the normal approximation to the Mardia's skewness and the Enomoto's normalizing transformation to the Mardia's kurtosis seems to have relatively good power over the alternatives that are considered.
Communications for Statistical Applications and Methods
/
제30권4호
/
pp.423-435
/
2023
The Jarque and Bera (1980) statistic is one of the well known statistics to test univariate normality. It is based on the sample skewness and kurtosis which are the sample standardized third and fourth moments. Desgagné and de Micheaux (2018) proposed an alternative form of the Jarque-Bera statistic based on the sample second power skewness and kurtosis. In this paper, we generalize the statistic to a multivariate version by considering some data driven directions. They are directions given by the normalized standardized scaled residuals. The statistic is a modified multivariate version of Kim (2021), where the statistic is generalized using an empirical standardization of the scaled residuals of data. A simulation study reveals that the proposed statistic shows better power when the dimension of data is big.
Communications for Statistical Applications and Methods
/
제28권5호
/
pp.463-475
/
2021
Desgagné and de Micheaux (2018) proposed an alternative univariate normality test to the Jarque-Bera test. The proposed statistic is based on the sample second power skewness and kurtosis while the Jarque-Bera statistic uses sample Pearson's skewness and kurtosis that are the third and fourth standardized sample moments, respectively. In this paper, we generalize their statistic to a multivariate version based on orthogonalization or an empirical standardization of data. The proposed multivariate statistic follows chi-squared distribution approximately. A simulation study shows that the proposed statistic has good control of type I error even for a very small sample size when critical values from the approximate distribution are used. It has comparable power to the multivariate version of the Jarque-Bera test with exactly the same idea of the orthogonalization. It also shows much better power for some mixed normal alternatives.
Malkovich & Afifi (1973)는 합교원리 (union-intersection principle)를 이용하여 왜도와 첨도를 다변량으로 일반화하였으나 이는 자료의 차원이 클 경우에는 사용이 용이하지 않다. 본 논문에서는 이러한 단점을 보완하는 이들의 근사통계량을 제안한다. 그리고 제안된 근사통계량, Malkovich & Afifi (1973)의 통 계 량, Mardia(1970)의 왜도와 첨도의 검 정력을 모의실험을 통하여 비교한다.
Journal of the Korean Data and Information Science Society
/
제28권5호
/
pp.959-970
/
2017
본 연구에서는 두 변수의 상관계수를 반영한 이변량 자료의 왜도와 첨도 통계량을 제안하고, 시각적으로 표현할 수 있는 표면그림을 개발한다. 이변량 왜도 통계량은 이변량 확률표본 자료의 치우침 방향과 정도를 표현하는 실수 한 쌍으로 정의한다. 첨도는 양의 값을 가지며 이변량 정규분포를 기준으로 꼬리 부분의 두터운 정도를 파악할 수 있다. 그리고 표면그림은 분위벡터를 바탕으로 평면에 구현한다. 다양한 형태의 이변량 자료를 생성하여 표면그림을 작성하고 왜도와 첨도를 계산하여 탐색해 본 결과, 왜도와 첨도 값들은 표면그림으로 구현한 이변량 자료의 특징을 잘 반영하는 것을 발견할였다. 그러므로 본 논문에서 제안한 왜도, 첨도 그리고 표면그림은 이변량 분포를 분석하는 기술통계학적 방법으로 활용할 수 있다.
In this study, a skewness estimation method (SEM) and kurtosis estimation method (KEM) are introduced to determine the number of inactive cycles in Monte Carlo eigenvalue calculations. The SEM and KEM can determine the number of inactive cycles on the basis that fully converged fission source distributions may follow normal distributions without asymmetry or outliers. Two convergence criteria values and a minimum cycle length for the SEM and KEM were determined from skewness and kurtosis analyses of the AGN-201K benchmark and 1D slab problems. The SEM and KEM were then applied to two OECD/NEA slow convergence benchmark problems to evaluate the performance and reliability of the developed methods. Results confirmed that the SEM and KEM provide appropriate and effective convergence cycles when compared to other methods and fission source density fraction trends. Also, the determined criterion value of 0.5 for both ε1 and ε2 was concluded to be reasonable. The SEM and KEM can be utilized as a new approach for determining the number of inactive cycles and judging whether Monte Carlo tally values are fully converged. In the near future, the methods will be applied to various practical problems to further examine their performance and reliability, and optimization will be performed for the convergence criteria and other parameters as well as for improvement of the methodology for practical usage.
International Journal of Reliability and Applications
/
제8권1호
/
pp.1-16
/
2007
In this paper, we derive exact explicit expressions for the triple and quadruple moments of the lower record values from inverse the Weibull (IW) distribution. Next, we present and calculate the coefficients of the best linear unbiased estimates of the location and scale parameters of IW distribution (BLUEs) for different choices of the shape parameter and records size. We then use the higher order moments and the calculated BLUEs to compute the mean, variance, and the coefficients of skewness and kurtosis of certain linear functions of lower record values. By using the coefficients of the skewness and kurtosis, we develop approximate confidence intervals for the location and scale parameters of the IW distribution using Edgeworth approximate values and then compare them with the corresponding intervals constructed through Monte Carlo simulations. Finally, we apply the findings of the paper to some simulated data.
This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.