• 제목/요약/키워드: skeletal muscle mass

검색결과 259건 처리시간 0.025초

타바타 운동과 케틀벨 운동이 성인 여성의 폐활량과 골격근량 및 지구력에 미치는 효과 (The Effects of Tabata Exercise and Kettle Bell Exercise on Vital Capacity, Skeletal Muscle Mass, and Endurance in Women)

  • 양회송;정찬주;유영대;전현주;허재원
    • 대한통합의학회지
    • /
    • 제5권4호
    • /
    • pp.11-19
    • /
    • 2017
  • Purpose : The purpose of this study was to compare the effects of Tabata exercise and Kettle bell exercise on vital capacity, skeletal muscle mass, and endurance in women. Methods : Twenty subjects participated in this study. They were divided into two group: a Tabata exercise group (n=10) and a kettle bell exercise group (n=10). Both groups performed their assigned exercise 3 times a weeks for 6 weeks. Result : There were statistically significant differences in FVC, FEV1, FEV1/FVC, PEF, and VC (p<.05) between the Tabata exercise group and the kettle bell exercise group. There were also statistically significant differences in skeletal muscle mass and endurance function (p<.05) between the two groups. The Tabata exercise group demonstrated greater improvements in fitness parameters compared to those demonstrated by the kettle bell exercise group. Conclusion : The Tabata exercise group was more effective at increasing vital capacity, skeletal muscle mass, and endurance compared to the kettle bell exercise group.

Total energy intake according to the level of skeletal muscle mass in Korean adults aged 30 years and older: an analysis of the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008-2011

  • Jang, Bo Young;Bu, So Young
    • Nutrition Research and Practice
    • /
    • 제12권3호
    • /
    • pp.222-232
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Since gain or loss of skeletal muscle mass is a gradual event and occurs due to a combination of lifestyle factors, assessment of dietary factors related to skeletal muscle is complicated. The aim of this study was to investigate the changes in total energy intake according to the level of skeletal muscle mass. SUBJECTS/METHODS: A total of 8,165 subjects ${\geq}30years$ of age from the Korean National Health and Nutrition Examination Surveys (KNHANES) 2008-2011 were included in the analysis, and multivariate-adjusted regression analyses were performed to analyze the association of the quartiles of sarcopenia index (SI) with energy intake of the study population after adjusting for age and metabolic parameters. RESULTS: The increase in SI quartile was in proportion to the gradual decrease in systemic lipids and the anthropometric measurement of fat accumulation (P < 0.001). Subjects in higher SI quartiles tended to consume more total energy and energy-producing nutrients than those in lower quartiles (P < 0.001). After age, body weight, alcohol consumption, and metabolic parameters were adjusted in the analysis, total energy intake gradually increased according to the increase in SI quartile, and the association between total energy intake and SI was more pronounced in men. However, the risk (odd ratio) of having a low SI was not affected by any single macronutrient intake. CONCLUSION: In this study, total energy intake was positively associated with SI and relative skeletal mass in both men and women. However, no significant association or a weak association was observed between any single macronutrient intake and skeletal muscle mass. The data indicated that acquiring more energy intake within the normal range of energy consumption may help to maintain skeletal muscle mass.

Associations Between Skeletal Muscle Mass, Grip Strength, and Physical and Cognitive Functions in Elderly Women: Effect of Exercise with Resistive Theraband

  • Kwon, Insu;Kim, Ji-Seok;Shin, Chul-Ho;Park, Yoonjung;Kim, Jong-Hee
    • 운동영양학회지
    • /
    • 제23권3호
    • /
    • pp.50-55
    • /
    • 2019
  • [Purpose] The purpose of this study was to identify the relationships between muscle mass, muscle strength, and physical and cognitive functions and to examine the effects of resistive Theraband® exercise on sarcopenia-associated variables in the older population. [Methods] A total of 28 elderly women (age: 69.90 ± 0.8 years) participated in this study, 15 of whom underwent elastic band exercise for 1 hour per day, twice per week for 8 weeks. The correlation analysis was conducted to identify the associations between body composition, skeletal muscle mass indices, grip strength, and physical and cognitive functions. All variables were assessed at baseline and post-exercise. [Results] Skeletal muscle mass was significantly associated with grip strength and physical function. Gait speed was positively correlated with grip strength and physical function, but not with cognitive function. Theraband® exercise significantly improved gait speed and physical function. [Conclusion] The present data suggest that skeletal muscle mass is highly correlated with grip strength and physical function. Eight weeks of resistive Theraband® exercise favorably affects sarcopenia by improving gait speed and mobility of elderly women.

Effects of ursolic acid on muscle mass and bone microstructure in rats with casting-induced muscle atrophy

  • Kang, Yun Seok;Noh, Eun Bi;Kim, Sang Hyun
    • 운동영양학회지
    • /
    • 제23권3호
    • /
    • pp.45-49
    • /
    • 2019
  • [Purpose] Recent studies suggest that ursolic acid (UA) is a potential candidate for a resistance exercise mimetic that can increase muscle mass and alleviate the deleterious effect of skeletal muscle atrophy on bone health. However, these studies evaluated the effects of UA on skeletal muscle and bone tissues, and they have not verified whether such effect could occur concurrently on muscle and bone, as is the case with resistance exercise. Thus, the aim of this study was to analyze the effect of UA injection on muscle mass and bone microstructure using an animal model of atrophy to demonstrate the potential of UA as a resistance exercise mimetic. [Methods] The immobilization (IM) method was used on the left hindlimb of Sprague Dawley (SD) rats for 10 days to induce muscle atrophy, whereas the right hindlimb was used as an internal control (IC). The animal models were divided into two groups, SED (sedentary, n=6) and UA (n=6) to demonstrate the effect of UA on atrophic skeletal muscles. The UA group received a daily intraperitoneal injection of UA (5 mg/kg/day) for 8 weeks. After 10 days of IM, the data collected for the IC were compared with that of IM to determine whether muscle atrophy might occur. [Results] Muscle atrophy was induced and bone mineral density (BMD) decreased significantly. The 8-week UA treatment significantly increased the gastrocnemius muscle mass compared to the SED group. In regard to the effect of UA on bones, negative results such as a decrease in BMD, trabecular bone volume fraction, and trabecular number, and an increase in trabecular separation, were observed in the SED group, but no such difference was observed in the UA group. No significant difference was observed in atrophic hindlimbs between SED and UA groups. [Conclusion] These results alone are insufficient to suggest that UA is a potential resistance exercise mimetic for atrophic skeletal muscle and weakened bone. However, this study will help determine the potential of UA as a resistance exercise mimetic.

Gromwell (Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis

  • Ji-Sun Kim;Hyunjung Lee;Ahyoung Yoo;Hang Yeon Jeong;Chang Hwa Jung;Jiyun Ahn;Tae-Youl Ha
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.495-505
    • /
    • 2024
  • Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.

Association between dietary branched-chain amino acid intake and skeletal muscle mass index among Korean adults: Interaction with obesity

  • Chae, Minjeong;Park, Hyoung Su;Park, Kyong
    • Nutrition Research and Practice
    • /
    • 제15권2호
    • /
    • pp.203-212
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The branched-chain amino acids (BCAA), including isoleucine, leucine, and valine, promote muscle protein synthesis. However, obesity may interfere with protein synthesis by dysregulating mitochondrial function in the muscles. This study aimed to examine the association between dietary intake levels of BCAA and skeletal muscle mass index (SMI) in middle-aged participants, and the effect of obesity/abdominal obesity on this association. SUBJECTS/METHODS: The data of 3,966 men and women aged 50-64 years who participated in the 2008-2011 Korea National Health and Nutrition Examination Survey were analyzed. Intake levels of energy-adjusted dietary amino acids were obtained using a 24-hour dietary recall. SMI was calculated by dividing the appendicular skeletal muscle mass by body weight (kg) and multiplying the result by 100%. Multivariable general linear models were used to analyze the association of dietary BCAA intake levels with SMI. RESULTS: The beneficial effects of energy-adjusted dietary BCAA intakes on SMI were greater in the non-obesity/non-abdominal obesity groups; however, no significant associations were observed in the obesity/abdominal obesity groups (P > 0.05). CONCLUSIONS: Healthy weight and sufficient intake of dietary BCAA are recommended to maintain muscle mass.

Low Skeletal Muscle Mass and Clinical Outcomes in Chronic Obstructive Pulmonary Disease

  • Yong Jun Choi;Hye Jung Park;Jae Hwa Cho;Min Kwang Byun
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권4호
    • /
    • pp.272-283
    • /
    • 2023
  • Background: In patients with chronic obstructive pulmonary disease (COPD), decreased muscle mass is a frequently encountered comorbidity in clinical practice. However, the evaluation of muscle mass in patients with COPD in real-world practice is rare. Methods: We retrospectively reviewed the electronic medical records of all patients with COPD who underwent bioelectrical impedance analysis at least once between January 2011 and December 2021 in three hospitals. Then, we analyzed the performance rate of muscle mass measurement in the patients and the correlation between muscle mass, clinical parameters, and COPD prognosis. Results: Among the 24,502 patients with COPD, only 270 (1.1%) underwent muscle mass measurements. The total skeletal muscle mass index was significantly correlated with albumin, alanine transaminase, and creatinine to cystatin C ratio in patients with COPD (r=0.1614, p=0.011; r=0.2112, p=0.001; and r=0.3671, p=0.001, respectively). Acute exacerbation of COPD (AE COPD) was significantly correlated with muscle mass, especially the truncal skeletal muscle mass index (TSMI) in males (r=-0.196, p=0.007). In the multivariate analysis, TSMI and cystatin C were significant risk factors for AE COPD (hazard ratio, 0.200 [95% confidence interval, CI, 0.048 to 0.838] and 4.990 [95% CI, 1.070 to 23.278], respectively). Conclusion: Low muscle mass negatively affects the clinical outcomes in patients with COPD. Despite its clinical significance, muscle mass measurement is performed in a small proportion of patients with COPD. Therefore, protocols and guidelines for the screening of sarcopenia in patients with COPD should be established.

The effect of thalidomide on visceral fat pad mass and triglyceride concentration of the skeletal muscles in rats

  • Kim, Ki-Hoon;Choi, Chang-Bon;Kim, Jong-Yeon
    • Journal of Yeungnam Medical Science
    • /
    • 제35권2호
    • /
    • pp.213-218
    • /
    • 2018
  • Background: Body fats, especially both of abdominal fat pad mass and skeletal muscle fat content, are inversely related to insulin action. Therefore, methods for decreasing visceral fat mass and muscle triglyceride content may be helpful for the prevention of insulin resistance. Methods: Thalidomide, used for its anti-angiogenic and anti-inflammatory properties, was administered to rats for 4 weeks. A 10% solution of thalidomide in dimethyl sulfoxide was injected daily into the peritoneal cavity as much as 100 mg/kg of body weight. Results: The total visceral fat pad mass in the thalidomide-treated group was 11% lower than in the control group. The size of adipocytes of the epididymal fat pad mass in the thalidomide-treated group was smaller than in the control group. The intraperitoneal thalidomide treatment increased triglyceride concentrations by 16% in the red muscle, but not in the white muscle. Conclusion: The results suggested that intraperitoneal thalidomide treatment inhibited abdominal fat accumulation, and that the free fatty acids in the blood were preferentially accumulated in the red muscle rather than in the white muscle.

Effects of Omega-3 Fatty Acid Supplementation on Skeletal Muscle Mass and Strength in Adults: A Systematic Review

  • Gi Kyoung Moon;So Young Bu
    • Clinical Nutrition Research
    • /
    • 제12권4호
    • /
    • pp.304-319
    • /
    • 2023
  • Previous studies have suggested that omega-3 polyunsaturated fatty acids, predominantly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have several health benefits. However, their effect on changes in skeletal muscle mass and strength has not been established, owing to differences in study designs. This systematic review aimed to investigate the recent evidence regarding the role of dietary EPA and DHA in muscle mass changes and their association with muscle strength. Databases including PubMed and Google Scholar were searched for randomized controlled trials and single-arm interventions that investigated the effects of omega-3 fatty acids on skeletal muscle mass, strength, and body composition in adults aged 18 years and older. A total of 18,521 studies were retrieved from the databases and manual searches; 21 studies were quality assessed, and the findings were summarized. Studies were categorized into 3 main categories according to the type of omega-3 fatty acid supplementation: pure compounds such as oil tablets, formulated forms with protein, leucine, and vitamin D, and ingredients added to enteral nutrition support products. Overall, the majority of the study results appeared to indicate that omega-3 fatty acids are beneficial for muscle health. However, meta-analysis was not conducted because of the heterogeneity of the study participants, evaluation method of muscle indices, and intervention periods among the studies. High-quality studies are required to validate our conclusions. However, this systematic review of the effects of EPA and DHA on skeletal muscle and body composition provides evidence that can be applied in both clinical and industrial settings.

Factors Influencing Age-Related Loss of Skeletal Muscle Mass in Young Korean Men

  • Jongseok Hwang;Jeong-Kun Lee
    • 대한물리의학회지
    • /
    • 제18권4호
    • /
    • pp.67-75
    • /
    • 2023
  • PURPOSE: This study aimed to identify the clinical factors that contribute to age-related loss of skeletal muscle mass (ALSMM) among young Korean male adults. METHODS: This was a cross-sectional study involving 955 men aged between 20-29 years. They underwent screening to assess the ALSMM. The study examined a variety of factors, including age, height, weight, body mass index (BMI), waist circumference (WC), skeletal muscle mass index (SMI), lifestyle-related habits such as smoking and drinking status, systolic and diastolic blood pressure (SBP/DBP), fasting blood glucose (FBG) levels, as well as the serum triglyceride and total cholesterol (TC) levels. RESULTS: The variables that displayed significant associations with ALSMM were height, weight, BMI, WC, SMI, FBG, TC, DBP, and alcohol consumption (p < .05). Serum triglyceride levels, SBP, and smoking status did not exhibit statistical significance (p > .05). CONCLUSION: The study identified the contributing factors associated with the ALSMM in community-dwelling young adult males. These findings would enrich the current body of literature on ALSMM and provide potential risk factors associated with its development in young Korean males.