• Title/Summary/Keyword: skeletal muscle fatigue

Search Result 37, Processing Time 0.032 seconds

Control of FES Cycling Considering Muscle Fatigue (근피로를 고려한 FES 싸이클링의 제어)

  • Kim Chul-seung;Hase Kazunori;Kang Gon;Eom Gwang-moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.207-212
    • /
    • 2005
  • The purpose of this work is to develop the FES controller that can cope with the muscle fatigue which is one of the most important problems of current FES (Functional Electrical Stimulation). The feasibility of the proposed FES controller was evaluated by simulation. We used a fitness function to describe the effect of muscle fatigue and recovery process. The FES control system was developed based on the biological neuronal system. Specifically, we used PD (Proportional and Derivative) and GC (Gravity Compensation) control, which was described by the neuronal feedback structure. It was possible to control of multiple joints and muscles by using the phase-based PD and GC control method and the static optimization. As a result, the proposed FES control system could maintain the cycling motion in spite of the muscle fatigue. It is expected that the proposed FES controller will play an important role in the rehabilitation of SCI patient.

Effect of Polysaccharides from Astragalus membranaceus on Exercise-Induced Fatigue and Oxidative Damage in Skeletal Muscle in Exhaustive Exercise Animal Models (과도 운동에 의해 유발되는 피로 및 골격근 산화적 손상에 대한 황기 다당체의 효과)

  • Go, Eun Ji;Lee, Hannah;Park, Hyun Su;Kim, Soo Jin;Park, Yeong Chul;Seong, Eun Soo;Yu, Chang Yeon;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.271-280
    • /
    • 2018
  • Background: Astragalus membranaceus is a well known oriental medicinal herb. The polysaccharides of the aboveground parts (AMA) and the radix (AMR) of A. membranaceus are the most important functional constituents. Methods and Results: The aim of this study was to determine the effects of AMA and AMR on the oxidative damage induced in the skeletal muscle of rats subjected to exhaustive exercise. Sprague-Dawley rats were randomly divided into exercise and non-exercise groups; in the groups receiving the test compounds, AMA and AMR were administered orally for 30 days. Skeletal muscle samples were collected from each rat after running to exhaustion on a treadmill to determine the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and the concentation of malondialdehyde (MDA). The antioxidant enzyme activities of SOD and GSH-Px of skeletal muscle of AMA- and AMR-treated groups were significantly higher than those of the control and commercial sports drink (SPD)-treated groups in exhaustive exercise rats. In addition, MDA concentrations in the skeletal muscle of the AMA- and AMR-treated groups were significantly lower than those of the control and SPD-treated groups. In the present study, the effects of AMA and AMR on exercise endurance capacity were also evaluated in mice subjected to a swimming exercise test. AMA and AMR supplementation prolonged the swimming time of mice and enhanced exercise endurance capacity. AMA and AMR possess the ability to retard and lower the production of blood lactate, and prevent the decrease of serum blood glucose. Conclusions: These results showed that, AMR and AMA exerted beneficial effect in mice, increasing the activity of the antioxidant systems and inhibiting oxidative stress induced by exhaustive exercise. The compounds improved exercise performance and showed anti-fatigue effects against exhaustive exercise.

Effect of Blood Flow Restriction Resistance Exercise in Twenties on Biceps Activity, Fatigue and Hemodynamic Variables (20대의 혈류제한 저항운동이 위팔두갈래근 활성도, 피로도 및 혈역학적 변인에 미치는 영향)

  • Dae-Keun Jeong;Jeong-Il Kang;Jun-Su Park
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • PURPOSE: This study examined the effects of lowintensity resistance exercise combined with blood flow restriction on muscle activity and muscle fatigue to determine if such a combination may be an alternative to high-intensity resistance exercise in maintaining the muscle mass and strength and preventing degenerative loss of skeletal muscle and to provide basic data for presenting the effectiveness of exercise. METHODS: The interventions were provided for five weeks, four sessions a week, once a day, 60 minutes a session to Experimental group I (n = 13), in which low-intensity resistance exercise was applied by combining blood flow restriction with the biceps curl and experimental group II (n = 12), in which only high-intensity resistance exercise was applied. As a pre-test, the biceps brachii muscle activity and fatigue were measured by surface electromyography, and the hemodynamic variables, such as blood pressure and heart rate, were measured. The post-test was performed identically to the pre-test and compared and analyzed with the pre-test. RESULTS: A significant difference within-group was observed in the biceps brachii muscle activity and fatigue in experimental group I and only in biceps brachii activity in experimental group II. No significant differences were observed between the two groups. CONCLUSION: Since the low-intensity resistance exercise combined with blood flow restriction has similar effects to high-intensity resistance exercise, it is considered an alternative for improving muscle function in groups unable to perform high-intensity resistance exercise.

EMG and Muscle Force of Intermittent Submaximal Constructions between Weight Lifters and Non-Weight Lifters (Weight Lifters와 Non-Weight Lifters 사이의 간헐적인 최대하 수축에서 근전도와 근력의 비교)

  • Sung, Paul S.
    • Physical Therapy Korea
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 1997
  • Skeletal muscle fatigue is often associated with diminished athletic performance and inability to maintain an expected force output as a function of time. The purpose of this study was to compare the effect of duration of exercise on skeletal muscle fatigue between Weight Lifters(WL) and Non-Weight Lifters(NWL). There were twelve normal healthy adult volunteers, ranging in age from 18 to 35 years. The group consisted of six NWL and six WL. Randomized cross-over design was set up and work-rest cycle was 8 minutes work and 1 minute rest based on 15% MVC. Muscle fatigue was measured by the amount of force produced by the wrist flexor muscle and EMG amplitude over time. Repeated measures ANOVAs($2{\times}4$) were used to determine two types of subjects(WL, NWL) during four different duration of exercises(16, 32, 48, 64 minutes). The force decreased over time in NWL and WL, but there was no significant difference(F=2.83, p>0.05). However, the EMG amplitude increased in WL(0.8200) and NWL(0.6348). The WL exhibited an increase in EMG at the end of the period, especially at 48 minutes of exercises than did the NWL(F=9.58, p<.05). This suggests the WL were able to adjust to prolonged effort with adaptations in neural effect over time, resulting in higher EMG amplitude. That is, WL may be able to learn to recruit more motor units with training. It is important to the degree of neuromuscular fatigue and the time needed for recovery may differ considerably between WL and NWL, there is a need to plan proper strength training or rehabilitation protocols to match with the requirements in different characteristics of groups.

  • PDF

Skeletal Muscle Ventricle Mechanics (골격근 심실의 역학)

  • 오중환
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.428-432
    • /
    • 1999
  • Background: It has been shown that low-grade electrical stimulus can transform fatigue resistant muscles which then can be used to protect the heart. The bulky and cumbersome power sources of the artificial heart or implantable ventricular assist devices are still in need of solution; however, on the other hand, the implantable ventricular assist devices using the resistant muscles as the power source have the advantages of using its own muscle contractions. The purpose of this study was to determine the possibility of a clinical application of the skeletal muscle ventricle. Material and Method: Latissimus dorsi muscles (LDM) of 8 canines were used for skeletal muscle ventricle. A latex chamber was wrapped one and a half times with LDM. The chamber was attached to a pressure transducer via Tygon tube. An electrode stimulator was placed around the thoracodorsal nerve and LDM was stimulated in cyclic bursts of 0.31 sec on time and 6.0 sec off time using 3.0 volt Itrel stimulator. The preload volume was added to the system in 25cc increments. Ejection volumes, pressures, and peak power outputs were measured. Result: Ejection volume was 76.3cc with 0cc of preload. Ejection volumes were less than 70ml with increments of preload over 75cc Pressures were more than 107 mmHg when the preloads were less than 75cc and less than 100 mmHg when the preloads were more than 100cc. Peak power output of 16.6 W/kg was observed at 50cc preload. Conclusion: Depending on the changes of preload, the volumes ejected from skeletal muscle ventricle and pressures from the skeletal muscle contraction surpassed those of the normal heart. These data suggest that there are clinical applications for skeletal muscle ventricular assist system.

  • PDF

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

Fatigue Analysis of Knee Extensor Using sEMG and Dynamometer (sEMG와 Dynamometer를 이용한 슬관절 신전근의 피로 분석)

  • Jeong, Jin-Gyu;Kim, Yong-Nam;Park, Jang-Sung;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.3 no.1
    • /
    • pp.31-47
    • /
    • 2005
  • Fatigue is a common experience in our daily life and in therapeutic exercises. Human muscle fatigue has been studied using a wide variety of exercise models, protocols and assessment methods. This study conducts quantitative evaluation of fatigue of knee extensor with surface electromyography and dynamometer and is to provide basic materials in physical therapy diagnosis and assessment of skeletal muscle. Measurement of two stages was conducted with 88 normal adults between their twenties and seventies, correlations and differences using collected data according to age was compared and correlations among measured items were analyzed and then the following conclusions were obtained. Analysis of sEMG and dynamometry of knee extensor showed that MDF, FI, MVIC, ET had the closest relations with age and MDF, FI, MVIC were significantly increase with aging. In addition, it was found that there were high correlation among items of analysis.

  • PDF

An Analysis of Multichannel EMG in Continuous Isometric Contraction of Human Muscle (근육의 지속적인 등척성 수축시의 다 채널 근전도 해석)

  • Lee, Seung-Ju;Kim, Ki-Young;Yoon, Chae-Hyun;Lee, Hyun-Chul;Yoon, Yang-Woung;Park, Hyung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2696-2698
    • /
    • 2002
  • In this study, the comparison of the contractile states change at prime mover muscle with that at synergist muscle was executed, while the muscle contracted continuously with isometric contraction. The contractile states of muscle becomes to change when the voluntary contraction of skeletal muscle is progressed continuously. Such the contractile states change is divided into three states in consideration for not only physiological change but also the psychological change by CNS(central nervous system) as "stable state", "fatigue state" and "pain state". As a result of this study, the prime mover muscle is reached "pain state" but the synergist muscle is not reached. Namely the synergist muscle is delayed state than the prime mover muscle. This result judged that although the prime mover muscle have reached a limit when contraction is continued, owing to effect of delayed state of the synergist muscle, the prime mover muscle is endured some more contraction.

  • PDF

Association of Grit and Body Composition with Fatigue and Burnout among Shift-work Nurses

  • Baek, MinJung;Han, Kihye
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2022
  • Purpose: This study aimed to investigate the effects of grit and body composition on fatigue and burnout in shift-working nurses. Methods: A descriptive cross-sectional design using self-report questionnaires was employed. Data were collected between February and April 2021 from 192 shift-working nurses in 22 units of C tertiary hospitals. Of the 192, 175 nurses returned their completed questionnaires (return rate: 91.1%). The participants objectively measured their body composition for three consecutive days using a home body composition measurement scale. Results: Nurses with higher consistency of interest were more likely to have lower chronic fatigue (B = -5.23, p= .013), lower emotional exhaustion (B = -2.75, p< .001), and decreased depersonalization (B = -1.08, p= .014). Perseverance of effort was not statistically significant for fatigue; however, it was statistically significant for higher personal accomplishment among the subdomains of burnout (B= 2.50, p< .001). Skeletal muscle mass and body mass index had no significant effect on fatigue and burnout. Conclusion: To reduce fatigue and burnout in shift-working nurses, comprehensive efforts at the organizational and individual levels should be implemented to increase their grit. Further research is needed to determine whether body composition affects fatigue and burnout in shift-working nurses.