• Title/Summary/Keyword: skarn Fe mineralization

Search Result 39, Processing Time 0.022 seconds

The Skarnification and Fe-Mo Mineralization at Lower Part of Western Shinyemi Ore Body in Taeback Area (태백지역 신예미 서부광체 하부의 스카른화작용 및 철-몰리브덴 광화작용)

  • Seo, Ji-Eun;Kim, Chang-Seong;Park, Jung-Woo;Yoo, In-Kol;Kim, Nam-Hyuck;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.35-46
    • /
    • 2007
  • Shinyemi skarn deposits occur as Fe-Mo skarn type and Pb-Zn-Cu hydrothermal replacement type along the contact between Cretaceous Shinyemi granitoids and Cambro-Ordovician mixed limestone and dolostone sequence of the Choseon Supergroup. In the lower part of Western Shinyemi ore body two stages of skarn formation have been observed: the early, stage I (magnesian) skarn with Fe mineralization and the late, stage II(calcic) skarn with Mo mineralization. The stage I skarn spatially is overprinted by stage II skarn. The stage I skarn is predominantly composed of olivine, magnetite and diopside whereas, the stage II skarn is dominated by hedenbergite and garnet. The skarnification process occurred in two stages, both prograde and retrograde for stage I and stage II skarns. In stage I, the prograde skarns, mainly composed of anhydrous silicate minerals, were formed at relatively higher temperatures (about $400\;to\;550^{\circ}C$) under low $CO_{2}$ fugacity ($X_{CO2}<0.1$) conditions. On the other hand, the retrograde skarns that consisted of hydrous minerals were formed at lower temperatures (about $300\;to\;400^{\circ}C$).

Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit (우석광상 다금속 광화작용의 시공간적 특성변화)

  • Im, Heonkyung;Shin, Dongbok;Jeong, Junyeong;Lee, Moontaek
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.493-507
    • /
    • 2018
  • The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.

Skarn Mineralization Associated with the Imog Granite in Nokjeonri Area, Yeongwol (영월 녹전리 일대 이목화강암과 관련된 스카른 광화작용)

  • Jeong, Jun-Yeong;Shin, Dongbok;Im, Heonkyung
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • The study area of Nokjeonri in Yeongwol belongs to the Taebaeksan Mineralized District. Ca and Mg skarn and related ore mineralization are developed in the Pungchon formation along the contact with the Imog granite. Ca skarn hosted in limestone mostly comprises garnet and pyroxene. Mg skarn developed in dolomite includes olivine and serpentine. Magnetite-hematite and pyrrhotite(±scheelite)-pyritegalena-sphalerite were mineralized during early and late stage, respectively. Garnet compositions are dominated by andradite series in proximal area and grossular series in distal area. Pyroxene compositions correspond to diopside series in majority. These compositional changes indicate that the fluids varied from oxidizing condition to reducing condition due to increased reaction with carbonated wall rocks as the fluids moved from the granite to a distal place. Fe2O3 and MgO concentrations of magnetite are higher in Mg skarn than those in Ca skarn, while FeO shows opposite trend. The Zn/Fe ratio of sphalerite increases with distance from the Imog granite. The δ34S values of sulfide minerals are similar to those of the Imog granite, indicating magmatic origin in ore sulfur. Mineralization was established in the order of skarn, oxide and sulfide minerals with decreasing temperature and oxygen fugacity and increasing sulfur fugacity.

Relation of the Skarnized Calcareous Nodules in the Hwajeol Formation and the Deep Concealed Orebody (화절층내 석회질 단괴(團塊)의 스카른화와 심부잠두(深部潛頭) 광체와의 관계)

  • Moon, Kun-Joo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.335-346
    • /
    • 1991
  • It is observed that calcareous nodules of the Hwajeol Formation are locally skarnized in the Sangdong district, in which the skarn mineralization extends 5 Km westward from the Sangdong mine area to the Hwajeolchi area. After a hidden granite beneath the Sangdong mine was discovered by exploration drillings, the exploration teams of the Sangdong mine and the Korean Mining Promotion Corporation have assumed that the skarn nodule of the Hwajeol Formation was derived from emplacement of a granite in deep place and the occurrence of hidden ore bodies below the skarn, and they have discovered high grades of tungsten orebody in the same horizon of the Sangdong ore body. Mutual genetic relatioships between epidote and garnet may be explained by following chemical reactions $Ca_2FeA_{12}$ $Si_3O_{12}(OH)+CaCO_3=Ca_3(Fe,\;Al)_2$ $SiO_{12}+1/2CO_2+1/2H^+Ca_3FeSi_3O_{12}+SiO_2+CO_2=2CaFeSi_{12}O_6+CaCO_3+1/2O_3$. It is concluded that epidote and garnet are useful as target minerals indicating a potential occurrence of deep seated hidden ore body. Since the epidote may inform the emplacement of the granite, while the garnet in the skarn nodule of the Hwajeol Formation may reflect a strong hydrothermal mineralization taking place from the depth.

  • PDF

Ore Minerals and Mineralization Conditions of Magnetite Deposits in the Janggun Mine, Korea (장군광산(將軍鑛山)의 자철석광상(磁鐵石鑛床)에서 산출(産出)되는 광석광물(鑛石鑛物)과 생성조건(生成條件))

  • Lee, Hyun Koo;Lee, Chan Hee;Song, Suckhwan
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Magnetite ores of the Janggun mine are embedded in dolomitic limestone of the Janggun Limestone Formation contacting with Chunyang granite, and are closely associated with skarn minerals. Mineralization of magnetite deposits can be divided into two stages as deep-seated skarn stage and shallow hydrothermal replacement stage. Mineralogies of skarn stage consist of magnetite, pyrrhotite and base-metal sulfides, and those of hydrothermal stage is base-metal sulfides, native bismuth, bismuthinite, tetrahedrite, boulangerite, bournonite and stannite. The FeS mole % in sphalerite and As atom % in arsenopyrite range from 22.47 to 26.30 and from 31.39 to 31.66 in skarn stage, and are from 17.54 to 32.54 and 28.87 to 30.70 in hydrothermal stage, respectively. Based on mineralization characteristics, mineral assemblages, chemical compositions and thermodynamic considerations, formation temperatures, sulfur fugacities ($-logf_2$), pH and oxygen fugacity ($-logfo_2$) estimated to be from 345 to $382^{\circ}C$, from 8.1 to 9.7atm, from 6.5 to 7.2 and from 30.5 to 31.2atm in the skarn stage, respectively, and temperature and $-logfs_2$ are from 245 to $315^{\circ}C$ and from 10.4 to 13.2atm in the hydrothermal stage.

  • PDF

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Ore Genesis of the Wondong Polymetallic Mineral Deposits in the Taebaegsan Metallogenic Province (태백산광화대내의 원동 다금속광상의 성인)

  • Hwang, Duk Hwan;Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.375-388
    • /
    • 1998
  • The purpose of this study is to investigate the ore genesis and occurrence of the Wondong polymetallic mineral deposits. The Pb-Zn, Fe and W-Mo mineralizations are found in skarn zones which formed mainly in or along the fault shear zones with the $N25-40^{\circ}W$ and $N10-50^{\circ}E$ directions, whereas the Cu-Mo mineralization is appeared hydrothermal replacement zone. The skarn minerals consist mainly of garnet and epidote, which were the last alteration phases between pneumatolytic and hydrothermal stages. The mineral paragenesis toward the late stage are as follows: arsenopyrite, scheelite, magnetite, pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and molybdenite. Average ore grades are 0.33 g/t Au, 46.29 g/t Ag, 0.06% Cu, 4.4% Pb, 2.61% Zn and 29.39% Fe in tunnels, and 0.31 % Cu, 0.52% Pb, 6.29% Zn, 29.29% Fe, 0.03% Mo and 0.12% $WO_3$ in drill cores. Fluid inclusion data shows that Type I (liquid-rich), Type II (vapor-rich) and Type III (halite-bearing) inclusions are coexisted and their homogenization temperatures are quite similar. This indicates that boiling conditions have been reached during the mineralization. It is also likely that the ore solutions were evolved through the mixing between magmatic and meteoric waters. Rhyolite and quartz porphyry far the mineralization probably are not responsible of the Wondong polymetallic mineral deposits.

  • PDF