• Title/Summary/Keyword: sizing optimization

Search Result 153, Processing Time 0.026 seconds

Stochastic Glitch Estimation and Path Balancing for Statistical Optimization (통계적 최적화를 위한 확률적 글리치 예측 및 경로 균등화 방법)

  • Shin Ho-Soon;Kim Ju-Ho;Lee Hyung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.35-43
    • /
    • 2006
  • In the paper, we propose a new method for power optimization that uses path balancing based on stochastic estimation of glitch in Statistical Static Timing Analysis (SSTA). The proposed method estimates the probability of glitch occurrence using tightness probability of each node in timing graph. In addition, we propose efficient gate sizing technique for glitch reduction using accurate calculation of sizing effect in delay considering probability of glitch occurrence. The efficiency of proposed method has been verified on ISCAS85 benchmark circuits with $0.16{\mu}m$ model parameters. Experimental results show up to 8.6% of accuracy improvement in glitch estimation and 9.5% of optimization improvement.

Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body (박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF

Gate Freezing, Gate Sizing, and Buffer Insertion for reducing Glitch Power Dissipation (단일화된 게이트 프리징, 사이징 및 버퍼삽입에 의한 저 전력 최적화 알고리즘)

  • Lee, Hyung-Woo;Shin, Hak-Gun;Kim, Ju-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.455-458
    • /
    • 2004
  • We present an efficient heuristic algorithm to reduce glitch power dissipation in combinational circuits. In this paper, the total number of glitches are reduced by replacing existing gates with functionally equivalent ones and by gate sizing which classified into three types and by buffer insertion which classified into two types. The proposed algorithm combines gate freezing, gate sizing. and buffer insertion into a single optimization process to maximize the glitch reduction. Our experimental results show an average of $67.8\%$ glitch reduction and $32.0\%$ power reduction by simultaneous gate freezing, gate sizing, and buffer insertion.

  • PDF

New Transistor Sizing Algorithms For CMOS Digital Designs (CMOS 디지틀 설계를 위한 트랜지스터 크기의 최적화기법)

  • 이상헌;김경호;박송배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.3
    • /
    • pp.68-76
    • /
    • 1994
  • In the automatic transistor sizing with computer for optimizing delay and the chip area of CMOS digital circuits, conventionally either a mathematical method or a heuristic method has been used. In this paper, we present a new method of transistor sizing, a sort of combination of the above two methods, in which the mathematical method is used for sizing of critical paths and the heuristic method is used for desizing of non-critical paths. In order to reduce the overall problem dimension, a basic block called an extended stage is introduced which includes a basic stage, parallel transistors and complementary part. Optimization for multiple critical paths is formulated as a problem of area minimization subject to delay constraints and is solved by the augmented Lagrange multiplier method. The transistor sizes along non-critical paths are decreased successively without affecting the critical path delay times. The proposed scheme was successfully applied to several test circuits.

  • PDF

Topology, Shape and Sizing Optimization of the Jig Supporting High Voltage Pothead (고전압 장비 지그의 동특성에 대한 위상, 형상 및 치수 최적화)

  • Choi, Bong-Kyun;Lee, Jae-Hwan;Kim, Young-Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • In the electric power supplying industry, outdoor sealing end (pothead) is used and sometimes it is necessary to check the seismic qualification analysis or test which is intended to demonstrate that the equipment have adequate integrity to withstand stress of the specified seismic event and still performs their function. And since the pothead is mounted on the supporting jig, the avoidance of resonance between the pothead and jig is required. In order to design jig, three types of optimization are performed to get the minimum weight while satisfying the natural frequency constraint using ANSYS. Optimal array, position and thickness of truss members of the jig are obtained through topology, shape and sizing optimization process, respectively. And seismic analysis of the pothead on the jig for given RRS acceleration computes the displacement and stress of the pothead which shows the safety of the pothead. The obtained natural frequency, mass, and member thickness of the jig are compared with those of the reference jig which was used for seismic experimental test. The numerical results of the jig in the research is more optimized than the jig used in the experimental test.

Concurrent Engineering Design Optimization of Composite Structures (복합재 구조물의 동시공학 설계최적화)

  • 김건인;이희각
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.304-312
    • /
    • 1996
  • Concepts, methods and tools for interactive CAD-based concurrent engineering design optimization of mechanical/structural systems and components which are critical in terms of cost development time, functionality and quality, are presented. The emphasis is on implementation of methods and capabilities for the optimization of composite structural system, and the integration of design process and manufacturing process of composite structures into standard CAD-based concurrent engineering environment The optimization of composite fuselage structures are performed under concurrent engineering environment for the example.

  • PDF

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Optimal Design of Multiperiod Process-Inventory Network Considering Transportation Processes (수송공정을 고려한 다분기 공정-저장조 망구조의 최적설계)

  • Suh, Kuen-Hack;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.854-862
    • /
    • 2012
  • The optimal design of batch-storage network by using periodic square wave model provides analytical lot sizing equations for a complex supply chain network characterized as multi-supplier, multi-product, multi-stage, non-serial, multi-customer, cyclic system including recycling and/or remanufacturing. The network structure includes multiple currency flows as well as material flows. The processes are represented by multiple feedstock/product materials with fixed composition which are very suitable for production processes. In this study, transportation processes that carry multiple materials with unknown composition are added and the time frame is changed from single period into multiple periods in order to represent nonperiodic parameter variations. The objective function of the optimization involves minimizing the opportunity costs of annualized capital investments and currency/material inventories minus the benefit to stockholders in the numeraire currency. The expressions for the Kuhn-Tucker conditions of the optimization problem are reduced to a multiperiod subproblem for average flow rates and analytical lot-sizing equations. The multiperiod lot sizing equations are different from single period ones. The effects of corporate income taxes, interest rates and exchange rates are incorporated.

Development of a Sizing System of Women's Fitness Wear for the Senior Population in South Korea (한국 노인 여성을 위한 피트니스 압박웨어 치수 개발)

  • Jeon, Eun-Jin;Lee, Won-sup;Park, Jang-Woon;You, Hee-Cheon
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.464-473
    • /
    • 2018
  • The objective of this study is to develop a sizing system of fitness clothing that can properly accommodate various body sizes of Korean senior women. The sizing system of upper and lower fitness clothing was developed in the present study by selection of key variables, identification of size category candidates, and determination of an optimal sizing system. First, key anthropometric dimensions (stature and bust circumference for upper clothing and stature; waist circumference for lower clothing) were identified by factor analysis on the direct body measurements (n = 272) and 3D whole-body scan data (n = 271) of Korean senior women in Size Korea. Second, sizing system candidates based on the key dimensions of upper and lower clothing were explored using a grid method and an optimization method. Lastly, among the sizing system candidates, optimal sizing systems of upper and lower clothing were selected in terms of accommodation rate. Five size categories (short/small, short/medium, tall/small, tall/medium, and tall/large) were selected as the optimal sizing systems of upper and lower clothing with 89% and 78% of accommodation rate, respectively, for the Korean senior women. The anthropometric characteristics of the representative humans of the optimal size categories would be of use in the design of fitness compressive wear for the better fit and effectiveness of exercise and health of Korean senior women.

Development of Optimal Sizing Software for CAES (CAES를 위한 최적 사이징 소프트웨어 개발)

  • Choi, Kyung-Hyun;Yang, Kyung-Bu;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1236-1239
    • /
    • 2008
  • Through the optimization design of the pneumatic components it leads the energy efficiency increasement and resources saving. Also it effects on the high speed operation, low speed operation, low weight, and complexity of pneumatic systems. In this paper the development of the software will be described based on Object-Oriented technology, which will provide function for development of pneumatic system without any deep knowledge about pneumatic system.

  • PDF