• Title/Summary/Keyword: size series

Search Result 1,522, Processing Time 0.026 seconds

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.

Implementation of CNN-based water level prediction model for river flood prediction (하천 홍수 예측을 위한 CNN 기반의 수위 예측 모델 구현)

  • Cho, Minwoo;Kim, Sujin;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1471-1476
    • /
    • 2021
  • Flood damage can cause floods or tsunamis, which can result in enormous loss of life and property. In this regard, damage can be reduced by making a quick evacuation decision through flood prediction, and many studies are underway in this field to predict floods using time series data. In this paper, we propose a CNN-based time series prediction model. A CNN-based water level prediction model was implemented using the river level and precipitation, and the performance was confirmed by comparing it with the LSTM and GRU models, which are often used for time series prediction. In addition, by checking the performance difference according to the size of the input data, it was possible to find the points to be supplemented, and it was confirmed that better performance than LSTM and GRU could be obtained. Through this, it is thought that it can be utilized as an initial study for flood prediction.

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition (표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작)

  • Park, Hyung Ju;Park, Jeong Won;Lee, Dae-Sik;Pyo, Hyeon-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

Effects of Zeolite Particle on Soil Chemical Properties and Rice Growth (Zeolite 입도(粒度)가 토양화학성(土壤化學性) 및 벼 생육(生育)에 미치는 영향(影響))

  • Lim, Soo-Kil;Lee, Chang-Ho;Shin, Kwan-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.340-349
    • /
    • 1995
  • Effects of the zeolite particle size on the soil chemical properties and on rice growth was investigated on the pot with the loamy sand (Sadu series) and silty clay loam(Paju series) soils. All the zeolite treatments brought the increase of unhulled grain yield on the both loamy sand and silty clay loam soils. Unhulled grain yield increased with increasing the amount of zeolite applied and with decreasing the amount of particle size of zeolite applied on both soils. Unhulled grain yield increased significantly by 11.1% (22.79g/head) with 2ton/10a of smaller than $106{\mu}m$ size zeolite on the loamy sand soil and on the silty clay loam soil, yield increased by 9.3% (24.98g/head) with 1.5ton/10a of smaller than $106{\mu}m$ size zeolite. CEC, pH and contents of exchangeable cations of the soil after experiment were raised by increasing the amount of zeolite and also by decreasing the particle size of zeolite at both soil. At the heading stage, the zeolite treatments improved the growth of rice plant compared to control. The nutrient contents(T-N, Ca, Mg, K, Na), except phosphorus, in the rice plant grown on the zeolite treated soils were higher than control plot.

  • PDF

Modeling and Analysis of Wireless Lan Traffic (무선 랜 트래픽의 분석과 모델링)

  • Yamkhin, Dashdorj;Lee, Seong-Jin;Won, You-Jip
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.667-680
    • /
    • 2008
  • In this work, we present the results of our empirical study on 802.11 wireless LAN network traffic. We collect the packet trace from existing campus wireless LAN infra-structure. We analyzed four different data sets: aggregate traffic, upstream traffic, downstream traffic, tcp only packet trace from aggregate traffic. We analyze the time series aspect of underlying traffic (byte count process and packet count process), marginal distribution of time series, and packet size distribution. We found that in all four data sets there exist long-range dependent property in byte count and packet count process. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. from the user to Internet, exhibits significant difference in its packet size distribution from the rests. Average packet size of upstream traffic is 151.7 byte while average packet size of the rest of the data sets are all greater than 260 bytes. Packets with full data payloads constitutes 3% and 10% in upstream traffic and the downstream traffic, respectively. Despite the significant difference in packet size distribution, all four data sets have similar Hurst values. The Hurst alone does not properly explain the stochastic characteristics of the underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method is computationally more efficient, FARIMA exhibits superior performance in accurately modeling the underlying traffic.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

EFFECT OF CANAL TAPERING IN TEETH OF VARIOUS APICAL SIZE & CROSS-SECTIONAL CONFIGURATION ON MICROLEAKAGE (다양한 치근단공 크기와 근관단면의 형태를 가지는 치아에서 taper의 정도가 미세누출에 미치는 영향)

  • Kim, Jung-Hee;Lee, Kyung-Ha;Lee, Se-Joon;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • The aim of this study was to evaluate the microleakage of teeth according to root canal preparation with & without apical enlargement in various size of apical foramen. 60 extracted one canal roots were cross-cutted at 5 mm from root apex and divided into two groups according to their apical foramen size of large (L) and small (S). Each group was subdivided into two groups accordance with their cross-sectional configuration at 5 mm from apex, round (R) and ovoid (O); SR Group, SO Group LR Group, LO Group. Each group was shaped in .02 taper by Quantec series Nickel-Titanium (NiTi) rotary file, obturated by lateral condensation method. Leakage was measured using a fluid transport model under 40 $cmH_2O$ pressure. After the leakage test, blocks which had showed the leakage retreated with .04 taper and ,06 taper and evaluated the degree of fluid filtration in each group. The data was analysed statistically using chi-square test and fisher's exact test. The results obtained were as follows : 1. Significant difference in leakage was found in groups which had different apical foramen size in .02 taper instrumentation (p < 0.05), but not in .04 taper instrumentation (p > 0.05) 2. The difference in microleakage according to the shape of canal was not evident at 5 mm from apex (p > 0.05). 3. There was correlation between .02 taper instrumentation and .04 taper instrumentation in LR group, LO group (p < 0.05).

Characteristics Variation of the Sedimentary Environment in Winter Season around the Baramarae Beach of Anmyeondo Using Surface Sediment Analysis (표층퇴적물 분석을 통한 동계 안면도 바람아래해수욕장 주변의 퇴적환경 변화특성)

  • JANG, Dong-Ho;KIM, Jang-Soo;PARK, No-Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.15-27
    • /
    • 2010
  • This study investigated the sedimentary environment changes in the Baramarae beach of Anmyeondo through spatio-temporal surface sediment analysis. In the winter season 2009, surface sediments were classified into 7 sedimentary facies such as gravel, sand, gravelly sand, gravelly muddy sand, muddy sand, silty sand, and sandy silt. Time-series analysis of average grain size from 2002 to 2009 revealed that the average grain size of sediments became finer and sorting was much worse. On the contrary, during the same period, the grain size became coarsening-trend and sorting was much better in beach area. These different grain size patterns resulted from the different change characteristics of beach and tidal flats. The southwestern beach area was connected to the open sea and thus fine sediments were removed by the environments with relatively high-energy. The sedimentation of fine sediments in the bay resulted from the tidal current action and the reduction of energy by the topographic effects. Fine sediments in the outer part of southwestern tidal flats could be explained such that the Seomot isle blocked ocean waves and as a result, low-energy environments accelerated sedimentations of fine sediments.