• Title/Summary/Keyword: size series

Search Result 1,523, Processing Time 0.027 seconds

Hydraulic Characteristics of Mountainous Forest Soils in Korea and Applicability of Pedotransfer Functions

  • Jung, Kangho;Sonn, Yeonkyu;Hur, Seungoh;Ha, Sangkeun;Jung, Munho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.428-435
    • /
    • 2015
  • Pedotransfer functions (PTFs) were developed for each soil horizon to estimate hydraulic characteristics of mountainous forest soils in South Korea. Twenty one dominant soil series from 8 soil catenae such as granite-originated catena and volcanic ash-originated catena were selected for the study; gravel contents of selected soils were 10% or lower. Saturated conductivity (Ks) was measured for each horizon in situ. Particle size distribution and organic matter content of each horizon were also determined. Based on correlation analysis with total data set, sand separate showed positive relationship with Ks ($r=0.24^*$) while clay separate had negative relationship with Ks ($r=-0.29^{**}$). The correlation coefficients of sand, clay, and organic matter content with Ks increased to $0.41^{**}$, $-0.67^{***}$, and $0.58^{***}$, respectively, using data from granite- or gneiss-originated catena with exception of volcanic ash-originated catena and sedimentary rock-originated catena. Determination coefficients of PTFs were 0.31 for A horizon, 0.25 for B, and 0.35 for C with all data set while those were 0.74 for A, 0.48 for B, and 0.54 for C. Organic matter was a dominant factor affecting Ks in A horizon but clay content was selected as the only factor influencing Ks in C horizon. It implies that PTFs should be developed with understanding characteristics of parent materials and horizons. Developed PTFs for granite- or gneiss-originated catena were following: A horizon: Log ($K_s{\times}10^7$) = -0.031C + 0.398OM + 3.49 B horizon: Log ($K_s{\times}10^7$) = -0.028C + 0.141OM + 4.05 C horizon: Log ($K_s{\times}10^7$) = -0.072C + 4.66 where C is clay separate (%) and OM is organic matter content ($g\;kg^{-1}$). The unit of Ks is cm $sec^{-1}$.

A Study on Resolving Barriers to Entry into the Resell Market by Exploring and Predicting Price Increases Using the XGBoost Model (XGBoost 모형을 활용한 가격 상승 요인 탐색 및 예측을 통한 리셀 시장 진입 장벽 해소에 관한 연구)

  • Yoon, HyunSeop;Kang, Juyoung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.155-174
    • /
    • 2021
  • This study noted the emergence of the Resell investment within the fashion market, among emerging investment techniques. Worldwide, the market size is growing rapidly, and currently, there is a craze taking place throughout Korea. Therefore, we would like to use shoe data from StockX, the representative site of Resell, to present basic guidelines to consumers and to break down barriers to entry into the Resell market. Moreover, it showed the current status of the Resell craze, which was based on information from various media outlets, and then presented the current status and research model of the Resell market through prior research. Raw data was collected and analyzed using the XGBoost algorithm and the Prophet model. Analysis showed that the factors that affect the Resell market were identified, and the shoes suitable for the Resell market were also identified. Furthermore, historical data on shoes allowed us to predict future prices, thereby predicting future profitability. Through this study, the market will allow unfamiliar consumers to actively participate in the market with the given information. It also provides a variety of vital information regarding Resell investments, thus. forming a fundamental guideline for the market and further contributing to addressing entry barriers.

Correlation Between Social Distancing Levels and Nighttime Light (NTL) during COVID-19 Pandemic in Seoul, South Korea Based on The Day-Night Band (DNB) Onboard The Suomi National Polar-Orbiting Partnership (S-NPP) Satellite (코로나19 팬데믹 기간의 서울의 사회적 거리두기 단계 변화와 The Suomi National Polar-Orbiting Partnership (S-NPP) 위성 영상을 이용한 Nighttime Light (NTL) 간의 상관관계)

  • Nur, Arip Syaripudin;Lee, Seulki;Ramayanti, Suci;Han, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1647-1656
    • /
    • 2021
  • In order to reduce the spread of infection due to COVID-19, South Korea has established a four-step social distancing standard and implemented it by changing the steps based on the rate of confirmed cases. The implementation of social distancing brought about a change in the amount of activity of citizens by limiting social contact such as movement and gathering of people. One of the data that can intuitively confirm this is Night Time Light (NTL). NTL is a variable that can measure the size of the national economy measured using lights captured by satellites, and can be used to understand people's social activities during the night. The NTL visible data is obtained via the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite. 1023 of Suomi data from 1 January 2019 until 26 October 2021 were collected to generate time series of NTL radiance change over Seoul to analyze the correlation with social distancing policy. The results show that implementing the level of social distancing generally decreased the NTL radiance both in spatial disparities and temporal patterns. The higher level of policy, limiting human activities combined with the low number of people who have been vaccinated and the closure of various facilities. Because of social distancing, the differences in human activities affected the nighttime light during the COVID-19 pandemic, especially in Seoul, South Korea. Therefore, this study can be used as a reference for the government in evaluating and improving policies related to efforts reducing the transmission of COVID-19.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

Study on Applicability of CGS Method based on Field Experiments and Cavity Expansion Theory (현장시험과 공동팽창이론을 통한 CGS 공법의 적용성 평가)

  • Jung, Hyun-Seok;Seo, Seok-Hyun;Choi, Hangseok;Lee, Hyobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • Grounds of the western coast of the Korean Peninsular are mostly composed of soft and cohesive soils, and it is necessary to carry out soil improvement before construction. The CGS (Compaction Grouting System) method has been commonly applied for the purpose of not only improving soft ground but also serving as the pile foundation of a bridge. In this paper, the CGS method was applied to the Incheon International Airport facility site, which consists of reclaimed landfill and soft clay soil, so as to evaluate the applicability of this soil improvement method to soft clay ground formations. Futhermore, results of construction were intensively studied along with a series of field experiments and theoretical consideration. The cone penetration tests were performed to assess the ground improvement effect of the CGS method. Consequently, the application of CGS method led to an increase in soil strength enough to be used as the pile foundation to support the bridge at the site. In addition, the size of the upper grout-bulb was estimated by adopting the cavity expansion theory and compared with that of actual grout bulb exhumed in the field. Therefore, it is proved that the cavity expansion theory can be utilized to predict and evaluate the improvement of soft ground.

Preparation and Properties of DMF-Based Polyurethanes Containing Bio-Polyol/Ester-Polyol for Wet-Type Polyurethane Artificial Leather (습식 인조피혁용 바이오 폴리올/폴리에스터 폴리올을 함유한 DMF 기반 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Choi, Pil-Jun;Ko, Jae-Wang;Park, Ji-Hyeon;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, attention has been paid to obtaining bio-polyols from renewable resources. Successful use of these natural ingredients successfully produced in the industry for the synthesis of various polyurethanes is a very important task. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized from methylene diphenyl diisocyanate (MDI)/1, 4-butanediol and bio-polyol (polytrimethylene ether glycol based on 1, 3-propanediol : B-POL)/polyester polyol (polyadipate diol based on 1,4-butandiol : H-PET). The effect of different ratio of bio-polyol (B-POL)/polyester polyol (H-PET) on the physical properties of polyurethane was investigated. As the B-POL content in B-POL/H-PET mixture increased, the glass transition of soft segment (Tgs) and tensile strength of polyurethane decreased, however, the elongation at break and tear strength increased. On the other hand, artificial leather was produced by wet process using synthesized DMF-based polyurethanes. It was found that there was almost no difference in the effect of the B-POL/H-PET composition on the average size and density (the number of cells per unit volume) of the porous cells formed in artificial leather. These results show that there is no problem in using bio-polyol (B-POL) based polyurethane for artificial leather produced by wet process.

Preliminary Study on the Phase Transition of White Precipitates Found in the Acid Mine Drainage (산성광산배수에서 발견되는 흰색침전물의 상전이에 대한 예비 연구)

  • Yeo, Jin Woo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • The white aluminum phases in acid mine drainage usually precipitates when mixed with stream waters with relatively high pH. The minerals in white precipitates play important roles in controlling the behavior of heavy metals by adsorbing and coprecipitation. By the phase transition of these minerals in white precipitates, dissolution and readsorption of heavy metals may occur. This study was conducted to obtain preliminary information on the phase transition of the mineral phases in white precipitates. In this study, the mineral phase changes in the white precipitates collected from the stream around Dogye Mining Site over time were investigated with different pH values and temperatures. White precipitates consist mainly of basaluminite, amorphous $Al(OH)_3$ and a small amount of $Al_{13}$-tridecamer. During aging, the incongruent dissolution of the basaluminite occurs first, increasing the content of the amorphous $Al(OH)_3$. After that, pseudoboehmite is finally precipitated following the precursor phase of pseudoboehmite. At $80^{\circ}C$, this series of processes was clearly observed, but at relatively low temperatures, no noticeable changes were observed from the initial condition with coexisting basaluminite and amorphous $Al(OH)_3$. At high pH, the desorption of $SO{_4}^{2-}$ group in basaluminite was initiated to promote phase transition to the pseudoboehmite precursor. Over time, the solution pH decreases due to the dissolution and phase transition of the minerals, and even after the precipitation of pseudoboehmite, only the particle size slightly increased but no clear cystal form was observed.

Soil Properties of Granitic Weathered Soils in the Landslide-prone Areas in Seoul (서울지역 화강암 풍화토 토층지반의 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.23-35
    • /
    • 2019
  • Landslides occur due to heavy rainfall in the summer season. Some of water may infiltrate into the ground; it causes a high saturation condition capable of causing a landslide. Soil properties are crucial in estimating slope stability and debris flow occurrence. The main study areas are Gwanaksan, Suraksan and Bukhansan (Mountain) in Seoul. A total of 44 soil samples were taken from the study area; and a series of geotechnical tests were performed. Physical and mechanical properties were obtained and compared based on region. As a result, among well-graded soils, they are classified as a clayey sand. Coarse-grained and fine-grained contents are approximately 95% and 5%, respectively, with very low amount of clay content. Density, liquid limit and dry unit weight are ranged in $2.62{\sim}2.67g/cm^3$, 27.93~38.15% and $1.092{\sim}1.814g/cm^3$. Cohesion and internal friction angle are 4 kPa and $35^{\circ}$ regardless of mountain area. Coefficient of permeability is varied between $3.07{\times}10^{-3}{\sim}4.61{\times}10^{-2}cm/sec$; it means that it results in great seepage. Permeability is inversely proportional to the uniformity coefficient and is proportional to the effective particle size. In the formal case, there was a difference by mountain area, while in the latter, the tendency was almost similar.

Create 3-Dimension Game World used Procedural Generation Algorithm (절차적 생성 알고리즘을 이용한 3차원 게임월드 제작)

  • Ko, Jung-Woon;Kyung, Byung-Pyo;Ryu, Seuc-Ho;Lee, Dong-Lyeor;Lee, Wan-Bok;Lee, Dong-Yeop
    • Journal of Industrial Convergence
    • /
    • v.16 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • The procedural generation algorithm is an algorithm that automatically generates a content to be used in a game by repeatedly executing a series of rules. As the size of the game increases, the amount of content used in the game increases. Accordingly, artificial intelligence research is actively conducted to automatically generate game contents using game artificial intelligence such as procedural generation. In this paper, we propose an algorithm to create 3D game world using procedural generation. The proposed algorithm generates a two-dimensional contour in which the path is naturally connected using Perlin-Noise whose noise is gradually changed. A three-dimensional Height-Map is created based on the generated two-dimensional contour lines. The generated Height-Map show that the shape of the map is normal and that the player is able to move around all the sections as in the game world created by hand. In the future, we will improve the performance of algorithms and apply them to game.

Comparative Evaluation on Collision and Particle Separation Efficiency between CO2 Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process (부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가)

  • Yang, Jong-Won;Choi, Yong-Ho;Chae, In-Seok;Kim, Mi-Sug;Jeong, Yong-Hoon;Kim, Tae-Geum;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • In recent years, carbon dioxide ($CO_2$) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using $CO_2$ as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized $CO_2$ only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between $CO_2$ bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of $CO_2$ bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that $CO_2$ bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.