• Title/Summary/Keyword: size reduction

Search Result 3,673, Processing Time 0.036 seconds

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Size control of Au nanoparticles by pH and effect of surface enhanced raman spectroscopy (SERS) (pH에 의한 골드나노입자의 사이즈 조절과 표면라만증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.379-382
    • /
    • 2019
  • Synthesis of gold nanoparticles (NPs) made an aqueous environment via the reduction of HAuCl4 by ascorbic acid (AC) with the surfactant of polyvinylpyrrolidone (PVP). Highly monodisperse gold particles with size ranges from 4 to 20 nm were prepared in high-yield by pH control. The synthesized gold nanoparticles were analyzed for structural and optical properties using transmission electron microscopy (TEM) and UV-vis spectroscopy. In this study, we could reveal that the prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties, and their SERS activities depends on size.

Buffer Scheme Optimization of Epidemic Routing in Delay Tolerant Networks

  • Shen, Jian;Moh, Sangman;Chung, Ilyong;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.656-666
    • /
    • 2014
  • In delay tolerant networks (DTNs), delay is inevitable; thus, making better use of buffer space to maximize the packet delivery rate is more important than delay reduction. In DTNs, epidemic routing is a well-known routing protocol. However, epidemic routing is very sensitive to buffer size. Once the buffer size in nodes is insufficient, the performance of epidemic routing will be drastically reduced. In this paper, we propose a buffer scheme to optimize the performance of epidemic routing on the basis of the Lagrangian and dual problem models. By using the proposed optimal buffer scheme, the packet delivery rate in epidemic routing is considerably improved. Our simulation results show that epidemic routing with the proposed optimal buffer scheme outperforms the original epidemic routing in terms of packet delivery rate and average end-to-end delay. It is worth noting that the improved epidemic routing needs much less buffer size compared to that of the original epidemic routing for ensuring the same packet delivery rate. In particular, even though the buffer size is very small (e.g., 50), the packet delivery rate in epidemic routing with the proposed optimal buffer scheme is still 95.8%, which can satisfy general communication demand.

A Study on the Governing Factor of Fatigue Limit in Austempered Ductile Iron (오스템퍼링 구상흑연주철의 피로한도 지배인자에 관한 연구)

  • 정회원;김진학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.221-229
    • /
    • 1999
  • We examined the governing factors of fatigue limit in annealed and austempered ductile iron specimens machined micro hole(dia.<0.4mm) in rotary bending fatigue test. Also, the quantitative relationship between fatigue limit and maximum defect size in specimens was investigated. Artificial defect(micro-pit type, dia.<0.4mm) on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iton(ADI) as compared with annealed ductile iron. According to the investigation of ${\sqrt{area}}_c$ which is the critical defect size to crack initiation at artificial defect, ${\sqrt{area}}_c$ of ADI was larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. Maximum defect size is one of the important parameters to predict fatigue limit. And, the quantitative relationship, between the fatigue limit ${\sigma}_{\omega}$ and the maximum defect size ${\sqrt{area}}_{max}$ can be expressed to ${\sigma}_{\omega}^n{\cdot}{\sqrt{area}}_{max}=C_2$ where, $C_2$ are constant. Moreover, it is possible to explain the difference in fatigue limit between, austempered and annealed ductile iron by introducing the parameter ${\delta}(=N_{sg}/N_{total})$in a plain spectimen.

  • PDF

Optimal Capacitor Placement and Operation for Loss reduction and Improvement of Voltage Profile in Radial Distribution Systems (방사상 배전계통의 손실감소 및 전압보상을 위한 커패시터 최적 배치 및 운용)

  • Kim, Tae-Kyun;Baek, Young-Ki;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1009-1011
    • /
    • 1997
  • This paper presents an optimization method which determines locations and size of capacitors simultaneously while minimizing power losses and improving voltage profile in radial distribution systems. Especially, the cost function associated with capacitor placement is considered as step function due to banks of standard discrete capacities. Genetic algorithms(GA) are used to obtain efficiently the solution of the cost function associated with capacitors which is non-continuous and non-differentiable function. The strings in GA consist of the node number index and size of capacitors to be installed. The length mutation operator, which is able to change the length of strings in each generation, is used. The proposed method which determines locations and size of capacitors simultaneously can reduce power losses and improve' voltage profile with capacitors of minimum size. Its efficiency is proved through the application in radial distribution systems.

  • PDF

STUDIES FOR THE CHARACTER OF NANO-SIZED $TiO_2$ PARTICLE SYNTHESIZED BY MICRO-EMULSION METHOD AND GOLD-DEPOSITED $TiO_2$ PARTICLE

  • Jhun, Hyun-Pyo;Park, Jae-Kiel;Lee, Kyoung-Chul;Park, Jae-Eon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.52-69
    • /
    • 1996
  • Nano-Sized TiO$_2$ particles with diameter between 2 and 5 nm are synthesized in Water/Triton X-100/n-Hexane microemulsion. Particles show the amorphous structure and partially hydroxide form. The optical absorbance of particles appears at 250nm and band edge at 340nm. Gold metal is deposited on the surface of TiO$_2$ particles by reduction reaction of Au(III) ion with sodium hypophosphite. The size of gold-deposited particles is 20nm, and the optical absorbance appears at 270nm and at 550nm. So particles show the red color. The dense precipitation is formed by aggregation in the TiO$_2$ nano-sized particles of about 5nm size. But the bulky precipitation is formed by agglomeration phenomena in the gold-deposited particles of 20nm size. And also gold-deposited particles is easily dispersed by being re-dispersed in PEG/Water solution. This study has compared those things measuring the SPF characteristics of the cosmetics made of the synthesized particles. If the particle size is controlled appropriately, then the SPF value will be higher, or more colorless cosmetics will be made.

  • PDF

Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant (웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발)

  • 서재승;전규동
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

Effect of Austenitizing and Quenching·Tempering Temperatures on Tensile and Impact Properties of AISI 51B20 (AISI 51B20강의 인장 및 충격특성에 미치는 오스테나이트화 온도와 퀜칭·템퍼링 온도의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.327-337
    • /
    • 2011
  • Effects of microstructural change, tensile properties and impact property according to the change of austenitizing temperature and tempering temperature of AISI 51B20 steel were examined. Regardless of austenite grain size, lath martensite with needle and packet shapes was found at tempering temperature of $300^{\circ}C{\sim}400^{\circ}C$. The needles of lath martensite changed to parallel packet at tempering temperature of $450^{\circ}C{\sim}600^{\circ}C$. As tempering temperature increased, tensile strength, yield strength and hardness decreased, while elongation, ratio of reduction area and Charpy impact energy increased. Grain size increased when quenching temperature was $930^{\circ}C$. Grain size had prominent effect on the mechanical properties of AISI 51B20 steel. Ratio of tensile strength/yield strength and yield strength autenitized at $880^{\circ}C$ followed by tempering at $350^{\circ}C{\sim}450^{\circ}C$ showed higher values than that of autenization at $930^{\circ}C$ due to fine grain size.

Coercivity of Near Single Domain Size Nd2Fe14B-type Particles

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.185-189
    • /
    • 2012
  • The coercivity of near single domain size $Nd_2Fe_{14}B$-type particles prepared by ball milling of HDDR-treated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy was investigated. The feasibility of a surface nitrogenation for improving the coercivity stability of the fine $Nd_2Fe_{14}B$-type particles was also studied. The near single domain size $Nd_2Fe_{14}B$-type particles had a high coercivity of over 9 kOe. However, the coercivity radically deteriorated as the temperature increased in air (< 2 kOe at $200^{\circ}C$). This coercivity reduction was attributed to the soft magnetic phases, ${\alpha}$-Fe and $Fe_3B$, which formed on the surface of the fine particle due to oxidation. Surface nitrogenation of the fine particles significantly improved the stability of their coercivity. The improvement in coercivity stability was attributed to the formation of a thin nitrogenated layer on the surface of the fine $Nd_2Fe_{14}B$-type particles, which enhanced the anisotropy field and gave improved resistance to oxidation (dissociation).

Size effect on strength of Fiber-Reinforced Self-Compacting Concrete (SCC) after exposure to high temperatures

  • Gulsan, M. Eren;Abdulhaleem, Khamees N.;Kurtoglu, Ahmet E.;Cevik, Abdulkadir
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.681-695
    • /
    • 2018
  • This pioneer study investigates the size effect on the compressive and tensile strengths of fiber-reinforced self-compacting concrete (FR-SCC) with different specimens, before and after exposure to elevated temperatures. 432 self-compacting concrete (SCC) specimens with two concrete grades (50 and 80MPa) and three steel fiber ratios (0%, 0.5% and 1%) were prepared and tested. Moreover, based on the experimental results, new formulations were proposed to predict the residual strengths for different specimens. A parametric study was also carried out to investigate the accuracy of proposed formulations. Residual strength results showed that the cylinder specimen with dimensions of $100{\times}200mm$ was the most affected, while the cube with a size of 100 mm maintained a constant difference with the standard cylinder ($150{\times}300mm$). Temperature effect on the cube specimen (150 mm) was the least in comparison to other specimen sizes and types. In general, provision of steel fibers in SCC mixtures resulted in a reduction in temperature effect on the variance of a conversion factor. Parametric study results confirm that the proposed numerical models are safe to be used for all types of SCC specimens.