• Title/Summary/Keyword: size reduction

Search Result 3,673, Processing Time 0.034 seconds

Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals

  • Kim, Yong-Hyeon;Shin, Pyung-Woo;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.557-562
    • /
    • 2016
  • Pyrophyllite granule powders for thermal spray coating were successfully prepared through spray drying process. To produce a stable slurry, commercial pyrophyllite powder of $45{\mu}m$ in size was ball-milled for reduction of the size to $2{\sim}3{\mu}m$ and a dispersant was added to control the viscosity. Dense and spherical granules (average granule size : $59{\mu}m$) were prepared under conditions of 12,500 rpm for rotation velocity of the atomizer and 100 cps for slurry viscosity. The granules were then heat treated at $1,200^{\circ}C$ for proper handling strength and flow properties. The final granules had an apparent density of $0.725g/cm^3$ and a flow rate of 2.5 g/sec, which represent excellent properties to be used as the granule powder for thermal spray coatings.

Mechanical Behavior and Microstructure Evolution during Semi-Solid Squeeze Cast Processing of Ignition-Proof Mg-Zn-Ca-Zr Alloy

  • Chang, Si-Young;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.502-509
    • /
    • 1997
  • The mechanical behavior and microstructural evolution in the ignition-proof Mg-Zn-Ca-Zr alloy produced by the semisolid squeeze casting are clarified and the mechanical properties are also compared with those of squeeze cast Mg-Zn-Ca-Zr alloy. The tensile strength and elongation increase slightly as the solid fraction depending on temperature decreases, while the 0.2% proof stress decreases. The size of primary crystal increases with increasing holding time. The tensile strength and 0.2% proof stress of the semi-solid squeeze cast Mg-Zn-Ca-Zr alloy decrease as the size of primary crystal increases, indicating the dependence of strength on the size of primary crystal. The elongation of the semi-solid squeeze cast Mg-Zn-Ca-Zr alloy is two times as large as the squeeze cast Mg-Zn-Ca-Zr alloy and the tensile strength is unchanged despite the growth of primary crystal, resulting from the refining of the melted ${\alpha}Mg$ phase and the brittle eutectic compound as well as the reduction of solidification shrinkage and porosities.

  • PDF

Experimental Study on the Generation of Hydration Heat of Binder using Latent Heat Material (잠열재를 사용한 결합재의 수화발열 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kim, Do-Su;Khil, Bae-Su;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.103-107
    • /
    • 2009
  • It is necessary to develop a new technology for effectively controlling thermal crack caused hydration heat according to the increasing construction of large size massive concrete structures such as mat foundation of high-rise building. Therefore, to develop a new technology for reducing hydration heat of large size massive concrete in this study, it was investigated hydration heat generation properties of binder using latent heat materials. As a test result, it was confirmed that latent heat materials were advanced on the reduction of hydration heat and control of thermal crack. It is expected to be applied as the excellent technology on the management of hydration heat and thermal crack in large size massive concrete structures.

Occurrence of Chrysanthemum stunt viroid in Chrysanthemum in Korea

  • Chung, Bong-Nam;Lim, Jin-Hee;Choi, Seong-Youl;Kim, Jeong-Soo;Lee, Eun-Jung
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.377-382
    • /
    • 2005
  • Infection rate of Chrysanthemum stunt viroid (CSVd) in 64 commercial chrysanthemum cultivars cultivated in Korea ranged from 9.7 to 66.8$\%$. Symptoms on leaves of CSVd-infected chrysanthemum included yellow spots, chlorosis, vein clearing, vein bending and crumpling. CSVd induced flower malformation in 'Scot', color change in 'Sharotte', and color breaking in 'Sharon'. CSVd caused reduction of plant height, leaf size, flower size and the flowers number by $32-50\%,\;26-35\%$, $14-36\%\;and\;14-75\%$, respectively. In conclusion, CSVd affected plant height, leaf size and flower quality in chrysanthemum plants.

Fuel Spray Characteristics of Dimethyl Ether (DME 연료의 분무 특성에 관한 연구)

  • Lee, Sang Hoon;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • This paper describes the atomization characteristics, as well as the velocity and size distribution, of DME spray based on common-rail injection system. To analyze the possibility of using DME fuel as an alternative fuel of diesel, spray atomization characteristics were investigated. For this investigation, two-dimensional phase Doppler analyzer system was used to obtain droplet size and velocity distribution simultaneously. Velocity and droplet size measurements were performed at various injection pressures. Results showed that increasing pressure from 25MPa to 50MPa leads to higher spray droplet velocities and smaller droplet diameter but injection pressure above 40MPa, no signifiant reduction was observed. With the droplet velocity and SMD comparison between diesel and DME fuel, it can be observed that DME has smaller SMD and droplet velocity due to its low surface tension.

  • PDF

Seed-Mediated Growth of Au Nanoparticles

  • Nguyen, Dung The;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.239-239
    • /
    • 2009
  • We prepared Au nanoparticles by seed-mediated method and investigated the effects of process variables on the seed-mediated growth of Au nanoparticles. The monodispersed Au seed nanoparticles in the size range from 14.3 nm to 20.3 nm were prepared by the reduction reaction between $HAuCl_4$ and citrate. We added the $HAuCl_4$ precursors with citrates into the Au seed solution and prepared the Au nanoparticles in the size range from 16.8 and 37.8 nm with monodisperse distribution and could control the size of Au nanoparticles by changing the amount of $HAuCl_4$ precursor.

  • PDF

Synthesis of Size Controlled Gold Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) Effect (크기가 조절된 골드 나노 입자의 합성과 표면 라만 증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.462-465
    • /
    • 2019
  • Nanoscale gold particles have been intensively researched due to their potential applications in catalysis, electronics, plasmonics, and biological assays. In our study, we fabricated gold nanoparticles (NPs) that were synthesized in an aqueous environment via the reduction of $HAuCl_4$ by ascorbic acid (AC) with a sodium citrate (SC) surfactant. Highly monodispersed gold particles with sizes ranging from 123 to 184 nm were prepared in high-yield by a surfactant concentration. The structural and optical properties of the synthesized gold nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. The prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties that were dependent on their on size.

Mechanistic representation of the grading-dependent aggregates resiliency using stress transmission column

  • Sun, Yifei;Wang, Zhongtao;Gao, Yufeng
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.405-411
    • /
    • 2019
  • A significant influence of the particle size distribution on the resilient behaviour of granular aggregates was usually observed in laboratory tests. However, the mechanisms underlying this phenomenon were rarely reached. In this study, a mechanistic model considering particle breakage is proposed. It is found to be the combined effects of the coefficient of uniformity and the size range between maximum and minimum particle sizes that influences the resilient modulus of granular aggregates. The resilient modulus is found to undergo reduction with evolution of particle breakage by shifting the initial particle size distribution to a broader one.

Ultrasonically enhancing flowability of cement grout for reinforcing rock joint in deep underground

  • Junho Moon;Inkook Yoon;Minjin Kim;Junsu Lee;Younguk Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.211-219
    • /
    • 2023
  • This study analyzes the changes in the physical properties of grout by irradiating it with ultrasonic energy and assesses the injectability of the grout into deep rock fractures. The materials used in the research are OPC (Ordinary Portland Cement) and MC (Micro Cement), and are irradiated depending on the water/cement ratio. After irradiating the grout with ultrasonic energy, viscosity, compressive strength, and particle size are analyzed, and the results of the particle size analysis were applied to Nick Barton's theory to evaluate the injectability of the grout into deep rock fractures under those conditions. It was found that the viscosity of the grout decreased after ultrasonic wave irradiation, and the rate of viscosity reduction tended to decrease as the water/cement ratio increased. Additionally, an increase in compressive strength and a decrease in particle size were observed, indicating that the grout irradiated with ultrasonic energy was more effective for injection into rock fractures.

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.