• Title/Summary/Keyword: size of graphite

Search Result 244, Processing Time 0.031 seconds

Structural Modification of Nanodiamond Induced by Ion Irradiation

  • Seok, Jae-Gwon;Im, Won-Cheol;Chae, Geun-Hwa;Song, Jong-Han;Lee, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.195.2-195.2
    • /
    • 2014
  • Nanodiamond (ND) is composed of inner diamond core and outer graphite shell. The size of ND used in this study was about 5 nm. The ND solution was dropped on silicon substrate and dried in air. Dried ND sample was purified by using annealing method in air. Then, 40 keV Fe ion was irradiated into the sample. The dose was varied from $1{\times}10^{14}$ to $1{\times}10^{16}ions/cm^2$. The post annealing was performed at 1073 K in the vacuum to recover diamond structure. The annealing at 873 K in air was performed to remove the outer graphite shell. The structure of ND was confirmed by X-ray diffraction (XRD) and Raman spectroscopy. We will present the detailed data and results in the conference.

  • PDF

Fabrication of Porous Alumina Ceramics by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 다공성 알루미나 세라믹스의 제조)

  • Shin, Hyun-Cheol;Cho, Won-Seung;Shin, Seung-Yong;Kim, Jun-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1183-1189
    • /
    • 2002
  • In order to develope the porous alumina ceramics with high strength, the pore characteristics and compressive strength were investigated in terms of relation to the conditions of spark-plasma sintering and the contents of graphite as a pore precursor. Porous alumina bodies were successfully prepared by spark-plasma sintering and burning out graphite in air. High porous bodies were fabricated by sintering at 1000${\circ}C$ for 3 min under a pressure of 30 MPa, heating rate of 80${\circ}C$/min and on-off pulse type of 12:2. For example, alumina bodies prepared by the addition of 10∼30 vol% graphite showed high porosity of 50∼57%. Also, the open porosity increased with graphite content. The relationship between pore characteristics and graphite contents could be explained by percolation model depending on cluster number and size. Porous alumina bodies prepared by the addition of 10∼30 vol% graphite showed the high compressive strength of 55∼200 MPa. This great improvement in strength was considered to be mainly due to the spark-plasma discharges and the self-heating action between particles.

MCMB Synthesis using Coal Tar Pitch

  • Seo, Hyeon-Kwan;Suh, Jeong-Kwon;Hong, Ji-Sook;Suh, Dong-Hack;Lee, Jung-Min
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • MCMB (mesocarbon microbeads) has been synthesized from coal tar pitch, petroleum pitch and polymer compound generally. But yield of MCMB was low about 20~40 wt% and was not above 50 wt%. Neither MCMB was replaced with natural graphite because of economic performance, refining MCMB, and control of the particle size distribution. This study was performed to elevate yield of MCMB and to develop technique of particle size distribution. As the result, yield of MCMB that was synthesized from coal tar pitch increased more than 60 wt% about raw material and particle size of MCMB was restrained according to control of QI (quinoline insoluble) ingredient in raw pitch, heat treatment temperature and time.

  • PDF

The Performance Analysis for Low-Depth Unit-type Ground Heat Exchanger According to Grouting Materials (저심도 지중열교환기 개발을 위한 그라우트 재료에 따른 채열성능 검토 연구)

  • Oh, Jin-Hwan;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.7-11
    • /
    • 2015
  • Recently, as the demand for sustainable energy sources is increasing, ground-source heat pump (GSHP) systems are receiving growing attention. However, the initial cost of GSHP system is higher than it of the conventional systems, especially, in small-size buildings. Therefore, for the application to the small-size building, it is necessary to develop small-size ground heat exchanger with small-size buildings. In this study, analysis of unit-type heat exchanger due to grouting materials. As a result, 1492.14 W of heat exchange rate was acquired in the condition of cement-silica sand-graphite materials.

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

Growth of graphene:Fundamentals and its application

  • Hwang, Chan-Yong;Yu, Gwon-Jae;Seo, Eun-Gyeong;Kim, Yong-Seong;Kim, Cheol-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.38-38
    • /
    • 2010
  • Ever since the experimental discovery of graphene exfoiliated from the graphite flakes by Geim et at., this area has drawn a lot of attention for its possible application in IT industry. For the growth of graphene, chemical vapor deposition (CVD) has been widely used to fabricate the large area graphene. The lateral size of this graphene can be easily controlled by the size of the metal substrate though the chemical etching to remove this substrate is somewhat troublesome. Another problem which is hard to avoid is the folding at the grain boundary. We will discuss the origin of the folding first and introduce the way to avoid this folding. To solve this problem, we have used the various types of micro-thin metal foils. The precise control of hydro-carbon and the carrier gas results in the formation of the graphene on top of substrate. The thickness of graphene layers can be controlled with the control of gas flow on top of Cu substrate in contrast to the previously reported self-limiting growth $behavior^1$. Uniformity of this graphene layer has been checked by micro-raman spectroscopy and SEM. The size of grain can be enhanced by thermal treatment or use of other metal substrate. The dependence of grain size on the lattice size of the substrate will be discussed. By selecting the shape of substrate, we can grow various types of graphene. We will introduce the micron size graphene tube and its application.

  • PDF

Tribological Behavior of the Alumina Reinforced with Unidirectionally Oriented SiC whiskers (일방향성 배열을 가잔 SiC whisker에 의해 강화된 알루미나 복합체의 마모마찰 특성)

  • 간태석;임대순;한병동
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.25-29
    • /
    • 1998
  • Sliding wear test and surface characterization techniques such as micro-Raman spectroscopy were employed to determine the effect of whisker content and orientation on the friction and wear behavior of SiC whisker reinforced alumina. Composites containing unidirectionally oriented whiskers were fabricated by novel technique Addition of SiC whiskers up to 20 vol.% lowered the friction and improved wear resistance. The results of this study indicated that highly disordered graphite and size of the layer behind the whiskers were responsible for variation of wear rate and friction coefficient.

  • PDF

Mineralogy of Low-Grade Uranium Ores in the Black Slate of the Ogcheon Group, Korea (옥천계(沃川系) 흑색(黑色)슬레이트내(內) 부존(賦存)하는 저품질(低品質) 우라늄광석(鑛石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Lee, Dong-Jin
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.133-146
    • /
    • 1986
  • Primary uraninite and secondary uranium minerals such as torbernite, metatorbernite, tyuyamunite, metatyuyamunite, autunite and metaautunite have been identified from various types of uranium ores. Uranium minerals occur as accessory minerals in both the primary and secondary ores. Low·grade uranium ores consist of various kinds of primary and secondary minerals. Major constituent minerals of primary uranium ores are graphite. quartz. Ba-feldspar and sericite/muscovite, and accessories are calcite, chlorite, fluorapatite, barite, diopside, sphene, rutile, biotite, laumontite, heulandite, pyrite, sphalerite and chalcopyrite, and secondary minerals consist of kaolinite, gypsum and goethite. Uraninite grains occur as microscopic very fine-grained anhedral to euhedral disseminated particles in the graphitic matrix, showing well·stratified or zonal distribution of uranium on auto-radiographs of low-grade uranium ores. Some uraninite grains are closely associated with very fine-grained pyrite aggregates, showing an elliptical form parallel to the schistosity. Some uraninite grains include extremely fine-grained pyrite particle. Sphalerite and pyrite are often associated with uraninite in graphite-fluorapatite nodule. The size of uraninite is $2{\mu}m$ to $20{\mu}m$ in diameter. Low-grade uranium ores are classified into 5 types on the basis of geometrical pattern of mineralization. They are massive, banded, nodular, quartz or sulfide veinlet-rich and cavity filling types. Well-developed alternation of uranium-rich and uranium-poor layers, concentric distribution of uranium in graphite-fluorapatite nodule and geopetal fabrics due to the load cast of the nodule suggest that the uranium was originally deposited syngenetically. Uraninite crystals might have been formed from organo-uranium complex during diagenesis and recrystallized by metamorphism. Secondary uranium minerals such as torbernite, tyuyamunite and autunite have been formed by supergene leaching of primary ores and subsequent crystallization in cavities.

  • PDF

Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method (고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가)

  • Park, Soo-Dong;Yoon, Sang-Hoon;Kang, Ki-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

Effect of reaction factors on the characteristics of Ni-coating layer onto graphite (흑연표면의 니켈코팅층 특성에 미치는 반응인자의 영향)

  • Dong Jin Kim;Hun Saeong Chung;Myung Kyu Jung;Ki Byoung Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.395-404
    • /
    • 1994
  • Ni-graphite composite powders were prepared by reduction of $Ni^{++}$ from ammoniacal nickel sulfate solution on graphite core by hydrogen gas. Effect of reaction factors on the reduction rate and the properties of nickel layer were investigated by SEM, Optical Microscopy, size and chemical analysis. Induction period, a time lag between the injection of hydrogen gas and the start of the reduction, was 20~110 mins and affected by the reaction temperature and stirring speed. The reduction rate of $Ni^{++}$ was $4.5g/{\ell}/min$ at optimum condition and increased with increasing reaction temperature and stirring speed.

  • PDF