• Title/Summary/Keyword: size exclusion chromatography (SEC)

Search Result 37, Processing Time 0.036 seconds

High Temperature Size Exclusion Chromatography

  • Cho Hee-Sook;Park Soo-Jin;Ree Moon-Hor;Chang Tai-Hyun;Jung Jin-Chul;Zin Wang-Cheol
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.383-386
    • /
    • 2006
  • High temperature size exclusion chromatography (SEC) has been used widely for the characterization of crystalline polymers, for which high temperature operation above the polymer melting temperature is required to dissolve the polymers. However, this high temperature operation has many advantages in SEC separation in addition to merely increasing polymer solubility. At high temperature the eluent viscosity decreases, which in turn decreases the column backpressure and increases the diffusivity of the analytes. Therefore, many reports on the high temperature operation of high performance liquid chromatography (HPLC) have focused on shortening the analysis time and enhancing the resolution. However, the application of high temperature SEC analysis to exploit the merits of high temperature operation is scarce. In this article, therefore, we report on a new apparatus design for high temperature SEC.

Chemical Speciation of Trace Metals in Natural Water by Ultrafiltration/Size Exclusion Chromatography/UV Absorption/ICP-MS

  • Haraguchi, Hiroki;Itoh, Akihide;Kimata, Chisen
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.405-410
    • /
    • 1995
  • A study on elemental speciation of trace metals in lake water (Lake Biwa in Japan) has been carried out by a size exclusion chromatography (SEC) / inductively coupled plasma mass spectrometry (ICP-MS) system. Before analysis, the water sample was preconcentrated with a ultrafiltration technique, where the large molecules with molecular weight larger than 10,000 were concentrated. Then the preconcentrated water samples (500-1000 fold) were analyzed by a SEC/ICP-MS system. Most trace metals were found at the UV absorption peaks corresponding to the molecular weights of ca. 300,000 and 10,000-50,000, where trace metals were on-line detected by ICP-MS. The results suggest that many of trace metals exist as the large organic molecules-metal complexes in natural water.

  • PDF

Refolding of Proteins at High Concentration by Size Exclusion Chromatography

  • Guan, Yixin;Gao, Yonggui;Yao, Shanjing;Cho, Man-Gi
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2002.09a
    • /
    • pp.9-17
    • /
    • 2002
  • Renaturation of Lysozyme by size exclusion chromatography(SEC) to improve yield as well as the initial and final protein concentration has been studied in detail, Although urea decreases the rate of proteins refolding, it can suppress protein aggregation to sustain pathway of correct refolding at high protein concentration, and there existed an optimum urea concentration in renaturation buffer. Lysozyme was successfully refolded from initial protein concentration of up to 100mg/m1 by SEC, the yield was more than 40%. And the refolding of Interferon-${\gamma}$ was further investigated.

  • PDF

Comparison of Size-Exclusion Chromatography and Flow Field-Flow Fractionation for Separation of Whey Proteins

  • Kang, Da-Young;Moon, Jae-Mi;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1315-1320
    • /
    • 2011
  • Whey protein (WP) is a mixture of proteins, and is of high nutritional values. WP has become an important source of functional ingredients in various health-promoting foods. In this study, size-exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AsFlFFF) were used for separation and analysis of whey proteins. It was found that a lab-prepared WP from raw milk is mostly of ${\beta}$-lactoglobulin with small amount of higher molecular weight components, while a commercial whey protein isolate (WPI) powder contains relatively larger amount of components other than ${\beta}$-lactoglobulin, including IgG and protein aggregates. Results suggest that AsFlFFF provides higher resolution for the major whey proteins than SEC in their normal operation conditions. AsFlFFF could differentiate the BSA and Albumin, despite a small difference in their molecular weights, and also was able to separate much smaller amount of aggregates from monomers. It is noted that SEC was able to show the presence of low molecular weight components other than the major whey proteins in the WP samples, which AsFlFFF could not show, probably due to the partial loss of those low molecular weight species through the membrane.

Refolding and Purification of Recombinant Human $Interferon-\gamma$ Expressed as Inclusion Bodies in Escherichia coli Using Size Exclusion Chromatography

  • Guan Yi-Xin;Pan Hai-Xue;Gao Yong-Gui;Yao Shan-Jing;Cho Man-Gi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2005
  • A size exclusion chromatography (SEC) process, in the presence of denaturant in the refolding buffer was developed to refold recombinant human $interferon-\gamma$ ($rhIFN-\gamma$) at a high concentration. The $rhlFN-\gamma$ was overexpressed in E. coli resulting in the formation of inactive inclusion bodies (IBs). The IBs were first solubilized in 8 M urea as the denaturant, and then the refolding process performed by decreasing the urea concentration on the SEC column to suppress protein aggregation. The effects of the urea concentration, protein loading mode and column height during the refolding step were investigated. The combination of the buffer-exchange effect of SEC and a moderate urea concentration in the refolding buffer resulted in an efficient route for producing correctly folded $rhIFN-\gamma$, with protein recovery of $67.1\%$ and specific activity up to $1.2\times10^7\;IU/mg$.

High Temperature Size Exclusion Chromatography for High Throughput Analysis

  • Chang, Tai-Hyun;Park, Soo-Jin;Cho, Hee-Sook;Kim, Young-Tak;Ihm, Kyu-Hyun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.202-202
    • /
    • 2006
  • With a modern size exclusion chromatography (SEC) column, molecular weight analysis of a polymer sample takes about 10 min. However, it is desirable to reduce the analysis time further, in particular, for high throughput measurements required in combinatorial analyses or 2D-HPLC analyses. We implemented the high temperature SEC for the purpose. By inserting a narrow bore tubing between the column and the detector, a sufficient backpressure can be maintained to prevent the mobile phase from boiling and the effluent is cooled down enough when it reaches the detector. Therefore, a normal SEC detector can be used without any modification. The SEC resolution is greatly improved at the elevated temperature at high flow rate which allows high speed operation.

  • PDF

SEC/Light Scattering Analysis of Multicomponent Polymer Systems

  • 이희정;장태현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.648-653
    • /
    • 1996
  • We have shown several examples of characterization of multicomponent polymer systems by size exclusion chromatography coupled with a light scattering detector. Although SEC cannot provide a complete information for such systems due to its intrinsic limitation, one can extend its capability by combining multiple detection in order to get relevant information to some extent.

Trends in Polymer Separations: Better and More Information on Polymer Distributions

  • Schoenmakers, Peter
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.113-113
    • /
    • 2006
  • Polymer separations are used to obtain information on molecular distributions (molecular-weight distribution, chemical-composition distribution, functionality-type distribution, etc.). The existing methods, such as size-exclusion chromatography are reliable, but imperfect. New methods and improvements to existing methods are being studied and some of the results will be discussed. In addition, comprehensive two-dimensional liquid chromatography allows the complete characterization of two mutually dependent distributions. LCxSEC chromatograms provide a very good qualitative impression of the distributions, but calibration is not straightforward. Finally, progress in mass spectrometry allows much better information to be obtained.

  • PDF

The Use of the Online Two-dimensional Liquid Chromatography Coupled with a Universal Detector for the Screening of Non-volatile Potential Migrants in Food Packaging Materials (식품포장재내 비휘발성 잠재 이행물질들의 스크리닝을 위한 이차원크로마토 그래피와 범용검출기의 이용)

  • Yoon, Chan-Suk;Lee, Keun-Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • For screening test of the non-volatile compounds which migrate from food packaging materials into foodstuffs, the traditional high performance liquid chromatography (HPLC) systems suffer from the lack of universal detector with high sensitivity and universality and high efficiency HPLC separation column which provides complete separation of complex mixtures into all individual substances. In this work, the use possibility of online two-dimensional liquid chromatography (2D-LC) system coupled with a charged aerosol detector (CAD), a universal detector, was reviewed. 2D-LC system permits to improve peak capacity and resolving power for complex mixtures. Charged aerosol detector (CAD) offers a new feasibility for detection of any non-volatile compounds with high sensitivity and constant response factor in a calibration range. The combination of size exclusion chromatography (SEC) and normal phase HPLC (NP-HPLC) is most frequently used for the separation of the natural and synthetic polymers which are mainly used as raw materials for the manufacture of food packaging materials. However, there is no commercial software available for data acquisition and handling and therefore the quantification in 2D-LC analysis is still rare.

  • PDF

Characterization of Exopolysaccharides Produced by Submerged Culture of an Entomopathogenic Fungus Paecilomyces sinclairii by Using a Multi-Angle Laser Light Scattering System

  • KIM SANG-WOO;HWANG HYE-JIN;CHOI JANG-WON;YUN JONG-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.560-567
    • /
    • 2005
  • Three groups of exopolysaccharides (EPSs) (designated as Fr-I, Fr-II, and Fr-III) were isolated from the culture filtrates of Paecilomyces sinclairii by gel filtration chromatography on Sepharose CL-4B. Their molecular characteristics were examined by multi-angle laser light scattering (MALLS) connected online to a size exclusion chromatography (SEC) and refractive index (RI) detector system. The weight-average molar mass of Fr-I, Fr-II, and Fr-III of EPSs were determined to be $1.540{\times}10^6,\;6.302{\times}10^4$, and $9.389{\times}10^4\;g/mol$, respectively. All three EPSs showed a fairly low polydispersity indice, ranging from 1.008 to 1.059 (nearly mono disperse behavior), and showed different carbohydrates and amino acids compositions; all fractions of EPSs consisted of mainly cystine, valine, and arginine in the protein moiety, and mainly ribose, galactose, and glucose in the carbohydrate moiety. The determination of gyration radii of the EPSs in SEC/MALLS analysis revealed the molecular shape of the Fr-I to be a rod-like structure, whereas the Fr-II and Fr-III had a random-coil structure in an aqueous solution.