• Title/Summary/Keyword: size effects

Search Result 8,026, Processing Time 0.033 seconds

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

The Effects of Trading Blocs on U.S. Outward FDI Activity: The Role of Extended Market Size

  • Im, Hyejoon
    • East Asian Economic Review
    • /
    • v.16 no.2
    • /
    • pp.205-225
    • /
    • 2012
  • I use panel data of sales by the foreign subsidiaries of the U.S. MNCs to examine whether trading blocs create more or less FDI and the impacts on FDI of the extended market size created by forming blocs. By employing a region-fixed effects model, I find that countries forming trading blocs attract more FDI, particularly from non-member countries, but that FDI does not always increase with the market size of the blocs. As the market size increases, FDI increases only for large blocs. However, these findings are sensitive to model specifications. A policy implication is that a country considering forming or joining a trading bloc with a view to attract FDI may want to form a trading bloc with a country or countries with a large market size.

  • PDF

The Effects of Egocentric Distance and Screen Size on Virtual Presence: Implications for the Design of Virtual Reality Environments in Large- Screen Displays

  • LIM, Taehyeong;HAN, Insook;RYU, Jeeheon
    • Educational Technology International
    • /
    • v.22 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • This study examined the effects of egocentric distance and screen size on learners' perceived virtual presence in a virtual reality environment with a large-screen display. Sixty-four undergraduate students participated in the study, which used a 3×2 randomized-block factorial design with repeated measures. Two independent variables were included: 1) egocentric distance, or the physical distance between the viewer's position and a screen display, and 2) screen size, or different screen heights with fixed width. Learners' perceived virtual presence, comprising involvement, spatial presence, and realness, was the dependent variable. Results showed that egocentric distance had significant effects on virtual presence, while screen size had none. A detailed discussion and implications are provided.

Initial Particle Size Effects on Sintering and Dielectric Properties of $Pb>(Fe_1/2Nb_1/2)O_3$ (초기입자크기가 $Pb>(Fe_1/2Nb_1/2)O_3$의 소결 및 유전성에 미치는 영향)

  • 박경봉;김태희;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.711-718
    • /
    • 1992
  • Pb(Fe1/2Nb1/2)O3 was prepared by the molten salt synthesis method using an equimolar mixture of NaCl-KCl. Initial particle size could be controlled by varying the weight ratio of the NaCl-KCl to raw materials from 0.1 to 1.0, and the initial particle size effects on the sintering and dielectric properties of Pb(Fe1/2Nb1/2)O3 were investigated at the sintering temperature range from 90$0^{\circ}C$ to 105$0^{\circ}C$. As the weight ratio of salt increased, the average particle size decreased and the particle size distributions tended to narrow. As the initial particle size decreased, the linear shrinkage and density increased due to the promotion of densification. Dielectric constant increased with decreasing the initial particle size resulting from the increase of density and grain size.

  • PDF

Effects of Illumination and Target Size on Time-To-Detect while Recovering Dark Adaptation (암순응 환경에서 조도수준과 표적크기가 탐지시간에 미치는 영향)

  • Park, Jae-Kyu;Park, Sung-Ha;Oh, Hyun-Seung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.71-76
    • /
    • 2009
  • Effects of dark adaptation have large safety implications. This study was aimed to investigate the effects of varying illuminance and the size of critical detail on visual performance (i.e., time-to-detect) in a dark room environment. While adapting to the dark environment, ten subjects were asked to detect and answer simple numerical expressions under 9 experimental conditions (3 illuminance level $\times$ 3 target size). The ANOVA results revealed that the time-to-detect was significantly affected by both of the illumination level and the size of critical detail. As illumination increased from 10 lux to 20 lux, the time-to-detect was significantly declined. For the size of critical detail, 0.5/min size (i.e., equal to 2 minutes of visual angle) resulted in a shorter time-to-detect, as compared to 0.7/min size (i.e., equal to 1.6 minutes of visual angle). Potential applications of this research include the development of design guidelines for illumination and warning signs in poorly illuminated viewing environments.

Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory

  • Ebrahimi, Narges;Beni, Yaghoub Tadi
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1301-1336
    • /
    • 2016
  • In this paper, the free vibrations of a short cylindrical nanotube made of piezoelectric material are studied based on the consistent couple stress theory and using the shear deformable cylindrical theory. This new model has only one length scale parameter and can consider the size effects of nanostructures in nanoscale. To model size effects in nanoscale, and considering the nanotube material which is piezoelectric, the consistent couple stress theory is used. First, using Hamilton's principle, the equations of motion and boundary condition of the piezoelectric cylindrical nanoshell are developed. Afterwards, using Navier approach and extended Kantorovich method (EKM), the governing equations of the system with simple-simple (S-S) and clamped-clamped (C-C) supports are solved. Afterwards, the effects of size parameter, geometric parameters (nanoshell length and thickness), and mechanical and electric properties (piezoelectric effect) on nanoshell vibrations are investigated. Results demonstrate that the natural frequency on nanoshell in nanoscale is extremely dependent on nanoshell size. Increase in size parameter, thickness and flexoelectric effect of the material leads to increase in frequency of vibrations. Moreover, increased nanoshell length and diameter leads to decreased vibration frequency.

Effects of Particle Size and Gelatinization of Job's Tears Powder on the Instant Properties

  • Han, Sung-Hee;Park, Soo-Jea;Lee, Seog-Won;Rhee, Chul
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • The effects of particle sizes (small, medium and large sizes) and gelatinization treatment on the changes of the instant properties of Job's tears powder were investigated. The degree of gelatinization on the different particle size samples of Job's tears powder was the highest in the small particle size, and it also showed an increasing trend regardless of pregelatinizing whether it is or not as the particle size decreased from large particle size to small particle size. The water solubility index of the pregelatinized samples was high compared to that of ungelatinized samples regardless of particle size and temperatures. The water absorption and swelling power increased as particle size and temperature were increased. The dispersibility and sinkability of ungelatinized sample was increased as particle size and temperature were increased and it also showed lower value regardless of particle size and temperature. However, the dispersibility and sinkability of pregelatinized samples were shown to have the opposite result, such that the smallest particle size of pregelatinized sample had the lowest sinkability (11.3%). The turbidity of the pregelatinized small particle size was the highest by a factor of 1.08.

A simulation study of container size based on the variance of demand and interarrival time in Kanban systems (칸반시스템에서 수요와 도착간격 변동에 따른 컨테이너 크기에 관한 시뮬레이션 연구)

  • Sohn, Kwon-Ik;Ham, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.301-312
    • /
    • 1999
  • The purpose of this paper is to study the effects of container size with multi-stage and multi-item on average inventory and customer service level in Kanban systems. We use the different distributions of demand and interarrival time for each item to show that we had better to change the container size depending on different type of item for this simulation study. The small lot size can be used for container size of a single item if there is no setup time. The container size should be identical with average order size as setup time increases. The fill rate increases if the container size is large with multi-item. However, it is difficult to establish the effective container size because the effects of the container size on the order queue time are not clear. It is suitable to use the average order size as the container size for each item if the variance of demand and interarrival time of each item is relatively small. It is effective to sue the average container size if the variance of them is relatively large.

  • PDF

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.