• Title/Summary/Keyword: size effect model

Search Result 2,032, Processing Time 0.029 seconds

Distinction between HAPS and LEO Satellite Communications under Dust and Sand Storms Levels and other Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.382-388
    • /
    • 2022
  • Satellite communication for high altitude platform stations (HAPS) and low earth orbit (LEO) systems suffer from dust and sand (DU&SA) storms in the desert regions such as Saudi Arabia. These attenuations have a distorting effect on signal fidelity at high frequency of operations. This results signal to noise ratio (SNR) to dramatically decreasing and leads to wireless transmission error. The main focus in this paper is to propose common relations between HAPS and LEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three dimensional relationship for HAPS and LEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gaseous effects for different frequency, and propagation angle to provide system operations with a predicted vision of satellite parameters' values. Skillful decision and control system (SD&CS) is proposed to control applied parameters that lead to improve satellite network performance and to get the ultimate receiving wireless signal under bad weather condition.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

Facial Expression Recognition through Self-supervised Learning for Predicting Face Image Sequence

  • Yoon, Yeo-Chan;Kim, Soo Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.41-47
    • /
    • 2022
  • In this paper, we propose a new and simple self-supervised learning method that predicts the middle image of a face image sequence for automatic expression recognition. Automatic facial expression recognition can achieve high performance through deep learning methods, however, generally requires a expensive large data set. The size of the data set and the performance of the algorithm are tend to be proportional. The proposed method learns latent deep representation of a face through self-supervised learning using an existing dataset without constructing an additional dataset. Then it transfers the learned parameter to new facial expression reorganization model for improving the performance of automatic expression recognition. The proposed method showed high performance improvement for two datasets, CK+ and AFEW 8.0, and showed that the proposed method can achieve a great effect.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

Developing an Entropic Drawdown-at-Risk (EDaR) Fluctuation Forecasting Model for Commodity Futures Market Using Entropy-Based Dependency and Causality Network Modularity (엔트로피 기반 인과관계 네트워크의 모듈성을 활용한 상품 선물 시장의 EDaR 변동 예측 모형 개발)

  • Choi, Insu;Kim, Woo Chang
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • 본 연구에서는 전이 엔트로피 개념을 활용하여 주요 상품 선물의 하방 리스크 지수의 정보 흐름을 바탕으로 한 인과관계 네트워크를 구성하였다. 그리고 구성된 네트워크를 활용하여 금융 시장을 분석하였으며, 또한 정보 흐름의 존재 여부를 바탕으로 상품 선물의 하방 리스크 지수의 예측력이 개선될 수 있는지 확인하고자 하였다. 이를 위하여 정보 불확실성의 감소량을 측정하는 전이 엔트로피를 인과관계의 측정 지표로 상정하였으며, 전이 엔트로피 측정 시 발생할 수 있는 유한크기효과(finite size effect)를 조정하는 데 있어서 효과적인 지표인 효율적 전이 엔트로피를 활용하여 정보 흐름 네트워크를 구성하였으며 이를 이용하여 금융 지수 간의 인과관계를 분석하고 EDaR 의 등락 예측에 활용하였다. 그 결과, 금융 시장 지수를 효율적 전이 엔트로피를 이용한 인과관계 네트워크를 활용하여 금융 시장의 복잡계 네트워크 분석이 가능함을 확인하였고, 구성된 네트워크를 활용하여 국내 금융 시장 등락 예측에 있어 더 적은 데이터 열을 활용하여 거의 유사한 예측 결과를 냄으로써 상품 선물 시장 관련 예측의 데이터 열 선택에 활용할 수 있음을 확인하였다.

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms (유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구)

  • Baek, Woon-Tae;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Investment strategy using AESG rating: Focusing on a Korean Market

  • KIM, Eunchong;JEONG, Hanwook
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Purpose: This study used ESG grade, but defined AESG, adjusted to the size of a company and examines whether it can be used as an investment strategy. Research design, data and methodology: The analysis sample in this study is a company that has given an ESG rating among companies listed on the Korea Stock Exchange. We examine the results through portfolio analysis and Fama-macbeth regression analysis. Results: As result of examining the long-only performance and the long-short performance by constructing quintile portfolios, it was observed that a significant positive return was shown. It was observed that there was an alpha that could not be explained in asset pricing models. Also, AESG had a return prediction effect in the result of a Fama-Macbeth regression that controlled corporate characteristic variables in individual stocks. Next, we confirmed AESG's usage through various portfolio composition. In the portfolio optimization, the Risk Efficient method was the most superior in terms of sharpe ratio and the construct multi-factor model with Value, Momentum and Low Vol showed statistically significant performance improvement. Conclusions: The results of this study suggest that it can be helpful in ESG investment to reflect the ESG rating of relatively small companies more through the scale adjustment of the ESG rating (i.e.AESG).