• Title/Summary/Keyword: size dependent effect

Search Result 640, Processing Time 0.028 seconds

Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.113-133
    • /
    • 2018
  • In this work, free vibration characteristics of functionally graded piezoelectric (FGP) nanobeams based on third order parabolic shear deformation beam theory are studied by presenting a Navier type solution as the first attempt. Electro-mechanical properties of FGP nanobeam are supposed to change continuously throughout the thickness based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Using Hamilton's principle, the nonlocal governing equations for third order shear deformable piezoelectric FG nanobeams are obtained and they are solved applying analytical solution. By presenting some numerical results, it is demonstrated that the suggested model presents accurate frequency results of the FGP nanobeams. The influences of several parameters including, external electric voltage, power-law exponent, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams is discussed in detail.

Effect of Surfactant on Synthesis of Colloidal Ag Nanoparticles (콜로이드 Ag 나노입자 합성시 계면활성제의 영향)

  • Lee Jong-Kook;Choi Nam-Kyu;Seo Dong-Seok
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.340-347
    • /
    • 2005
  • Silver nanoparticles were synthesized by chemical reduction method from aqueous silver nitrate solution ana hydrazine as a reduction agent. The morphology, particle size and shape were dependent on the mixing method, reaction temperature and time, molar ratio of hydrazine and silver nitrate, the kind of surfactant, and the addition of surfactant. The stability of the colloidal silver was achieved by the adsorption of surfactant molecules onto the particle. Silver nanoparticles have a characteristic absorption maximum at 430 nm under UV irradiation. It was found that the colloid was nanometer m size and formed very stable dispersion of silver. The Ag nanoparticles obtained showed the spherical shape with the size range of 10-30 nm.

Analysis of the nano indentation using MSG plasticity (Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석)

  • 이헌기;고성현;한준수;박현철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.413-417
    • /
    • 2004
  • Recent experiments have shown the 'size effects' in micro/nano scale. But the classical plasticity theories can not predict these size dependent deformation behaviors because their constitutive models have no characteristic material length scale. The Mechanism - based Strain Gradient(MSG) plasticity is proposed to analyze the non-uniform deformation behavior in micro/nano scale. The MSG plasticity is a multi-scale analysis connecting macro-scale deformation of the Statistically Stored Dislocation(SSD) and Geometrically Necessary Dislocation(GND) to the meso-scale deformation using the strain gradient. In this research we present a study of nano-indentation by the MSG plasticity. Using W. D. Nix and H. Gao s model, the analytic solution(including depth dependence of hardness) is obtained for the nano indentation , and furthermore it validated by the experiments.

  • PDF

A Study of Localization for Adiabatic Shear Band Using Non-local Theory (Non-local 이론을 적용한 단열전단밴드의 국부화에 대한 연구)

  • Lee Y. S.;Lee B. S.;Whang D. S.;Yoon S. J.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.205-208
    • /
    • 2001
  • Localized shear band is investigated through the analysis of one-dimensional model for simple shearing deformation of thermally rate dependent material. Generally mesh size or interval of nodes play an important role in determining the overall flow behavior of the material. In order to observe these size effects we adapted non-local theory by including higher order strain gradients of the equivalent strain into the constitutive equation for the flow stress. for the ease of convergence and numerical stability the inplicit finite difference scheme is employed.

  • PDF

Synthesis of Size Controlled Gold Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) Effect (크기가 조절된 골드 나노 입자의 합성과 표면 라만 증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.462-465
    • /
    • 2019
  • Nanoscale gold particles have been intensively researched due to their potential applications in catalysis, electronics, plasmonics, and biological assays. In our study, we fabricated gold nanoparticles (NPs) that were synthesized in an aqueous environment via the reduction of $HAuCl_4$ by ascorbic acid (AC) with a sodium citrate (SC) surfactant. Highly monodispersed gold particles with sizes ranging from 123 to 184 nm were prepared in high-yield by a surfactant concentration. The structural and optical properties of the synthesized gold nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. The prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties that were dependent on their on size.

The Impact of Macroeconomic Variables on the Profitability of Korean Ocean-Going Shipping Companies

  • Kim, Myoung-Hee;Lee, Ki-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • The objective of this study was to establish whether global macroeconomic indicators affect the profitability of Korean shipping companies by using panel regression analysis. OROA (operating return on assets) and ROA (ratio of net profit to assets) were selected as proxy variables for profitability. OROA and ROA were used as dependent variables. The world GDP growth rate, interest rate, exchange rate, stock index, bunker price, freight, demand and supply of the world shipping market were set as independent variables. The size of the firm was added to the control variable. For small-sized firms, OROA was not affect by macroeconomic indicators. However, ROA was affected by variables such as interest rates, bunker prices, and size of firms. For medium-sized firms, OROA was affected by demand, supply, GDP, freight, and asset variables. However, macroeconomic indicators did not affect ROA. For large-sized firms, freight, GDP, and stock index (SCI; Shanghai Composite Index) have an effect on OROA. ROA was analyzed to be influenced by bunker price and SCI.

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young;Kim, Sung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Prevention effect of Sunkiwhajung-tang, a prescription, on the gastric ulcer induced by indomethacin in rats (순기화중탕이 Indomethacin으로 유발된 위궤양에 미치는 영향)

  • Kim Sang Chan;Lee Dong En;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.326-337
    • /
    • 2003
  • In order to evaluate the prevention effect of Sunkiwhajung-tang (SWT) which has been used as a traditional prescription for the treatment of digestive disease in Korea on the gastric ulcer induced by indomethacin in rats, the changes of number and size of ulcerative lesions, parietal, chief, Grimelius and Serotonin-positive cells in the peri-ulcerative tissues were detected with histological examinations of ulcerative and peri-ulcerative lesions after oral injections of SWT extracts (125, 250 and 500 mg/kg, respectively). SWT prevented to a great extent the expected indomethacin-induced elevation in hemorrhagic ulcerative lesions, the number and size of ulcerative lesions, and the number of parietal cell, chief cell, Grimelius-positive cells and Serotonin-positive cells in the peri-ulcerative lesions in a dose dependent manner. These results provide a story evidence that SWT produced an protective effect on gastric ulcer induced by indomethacin. Determination of the specific mechanisms involved in the protective effect of SWT on the gastric ulcer will require additional study.

Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method

  • Singh, Piyush P.;Azam, Mohammad S.
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.25-42
    • /
    • 2021
  • In this article, the vibration behavior of embedded Functionally Graded Nanoplate (FGNP) employing nonlocal Kirchhoff's plate theory has been investigated under hygrothermal environment. The FGNP is considered to be supported by Winkler-Pasternak foundation. The Eringen's differential theory is used for size effect on the vibration of the FGNP. Rayleigh-Ritz method with orthogonal polynomials are employed for the governing equations and edge constraints. The advantage of this method is that it overcomes all the drawbacks of edge constraints and can easily handle any combinations of mixed edge constraints. The coefficients viz. moisture expansion, thermal expansion and elastic coefficients are considered to be transversely graded across the FGNP. The similarity of the calculated natural frequencies is examined with the previous research, and a good concurrency is seen. The objective of this article is to analyze the parameters' effect on the nondimensionalized frequency of embedded FGNP under hygrothermal environment subjected to all possible edge constraints. For this, uniform and linear rise of temperature and moisture concentration are considered. The study highlights that the nonlocal effect is pronounced for higher modes. Moreover, the effect of the Pasternak modulus is seen to be prominent compared to the Winkler modulus on non dimensionalized frequencies of FGNP.

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.104-112
    • /
    • 2012
  • Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.