• Title/Summary/Keyword: six legs and wheel

Search Result 3, Processing Time 0.017 seconds

Development of Mobile Robot for Rough Terrain (야지 주행을 위한 견마형 로봇 개발)

  • Lee, Ji-Hong;Shim, Hyung-Won;Jo, Kyoung-Hwan;Hong, Ji-Mi;Kim, Jung-Bae;Kim, Sung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.883-895
    • /
    • 2007
  • In this work, we present the development of a patrol robot which is intended to navigate outdoor rough terrain. Proposed mechanism consists of six legs for overcoming an obstacle, and six wheels for traveling. Also, in order to absorb vibration in rough terrain effectively, the slide-spring system and tubed type tire are adopted to each leg and each wheel. The control system of robot consists of several imbedded boards for management of lots of diverse devices such as sensors designed for rough terrain, motor controllers, camera, micro controller and so on. And the base system of the robot is designed to operate in real time and to surveille in the vicinity of the robot, and the robot system is controlled by wireless LAN connected to GUI-based remote control system, while CAN communication connects the control board and the device controllers for sensors and motor controllers. For operating this robot system efficiently, we propose the control algorithms for autonomous navigation using GPS, stabilization maintenance by posture control, obstacle-avoidance by impedance control, and obstacle-overcoming with interference-avoidance between wheels. The performance of the robot and the proposed algorithms are tested and proved by a set of experiments in outdoor rough terrain.

Shape Optimal Design for the Leg Parts of Chair (의자 다리 부재에 대한 형상 최적 설계)

  • Kang, Sung-Soo;Jeong, Young-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.735-739
    • /
    • 2011
  • In this study, a chair with 5 or 6 legs was designed using the commercial program CATIA V5 in order to efficiently design considering the load conditions. In addition, the stress analysis and shape optimization were carried out using ANSYS Workbench for the chair consisting of stainless steel, aluminum alloys, magnesium alloys and structural steel. As a result, a chair with five legs showed the maximum equivalent stress at the end of the edge of the wheel parts and on the other hand, a chair with six legs showed the maximum equivalent stress at the corner of the connecting parts of the pillar and leg. In addition, the material and the weight was reduced by shape optimization for the chair model with 5 legs and maximum equivalent stress for stainless steel was found that greatly relaxed, compared with that of before shape optimization model.

Development of a 3D simulator for optimal path generation of a mobile multiped robot (다족 모바일 로봇의 최적 경로 생성을 위한 3D 시뮬레이터의 개발)

  • Kim, Ki-Woo;Choi, Woo-Chang;Yoo, Young-Kuk;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.79-80
    • /
    • 2007
  • This paper deals with generating multi-ped mobile robot's optimal path and its simulation. The multi-ped robot has six-legs which make it possible to move actively by attached driving wheel at the end of legs. The simulation environment is created similarly to the indoor environment as simple obstacles and walls. Also simulator can reconstruct an simulation environment. In this paper, the suggested simulator can generate the optimal path from starting point to destination by applying the A* algorithm and Bug2 algorithm. Then it is possible to check algorithms as 3D screen and we can simulate under the generated path.

  • PDF