• Title/Summary/Keyword: site-response effect

Search Result 298, Processing Time 0.025 seconds

The Effect of Tree Density of Pinus koraiensis Forest on the Thermal Comfort and the Physiological Response of Human Body in Summer Season (잣나무림의 입목밀도가 여름철 온열환경 및 인체 생리반응에 미치는 영향)

  • Park, Bum-Jin;Kyeon, Chiwon;Choi, Yoonho;Yeom, Dong-geol;Kim, Geonwoo;Joung, Dawou
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.261-266
    • /
    • 2015
  • This study was conducted to examine the effect of tree density of Pinus koraiensis forest on the thermal comfort and the physiological response of human body in summer season. As the indicators of thermal comfort were used the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD), while the heart rate variability was used for the physiological indicator of subjects. The subjects were 15 physically healthy men and women in their 20s ($23.7{\pm}1.7$ years old). The subjects sat in each site to measure HRV for 5 minutes and the thermal comfort of each site was measured. As a results, it was proven by PMV and PPD that the Pinus koraiensis forest with 120% tree density was thermally more comfortable than the Pinus koraiensis forest with 80% tree density. In case of the subjects' physiological response, the Pinus koraiensis forest with 120% tree density showed significantly higher HF of HRV than the Pinus koraiensis forest with 80% tree density and significantly lower LF/HF. Therefore, the findings of this study scientifically proved that the Pinus koraiensis forest with 120% tree density is thermally more comfortable and physiologically more relaxing than the Pinus koraiensis forest with 80% tree density.

Seismic Fragility of Sewage Pipes Considering Site Response in Korean, Seoul Site (국내 서울지역의 부지응답해석을 고려한 하수도관의 지진취약도)

  • Shin, Dea-Sub;Kim, Hu-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.33-38
    • /
    • 2017
  • The number of damaged lifeline structures have been increasing with urban acceleration under earthquakes. To predict the damage, damage mitigation technology of lifeline structures should be analyzed using damage prediction technology. Therefore, in this paper, the degree of the fragility of structures under an earthquake was evaluated stochastically through an evaluation of the seismic fragility. The aim was to develop damage prediction technology of sewage pipes among the lifeline facilities. The site response was performed using the data from 158 boreholes in Seoul and 7 real earthquake waves to determine the responses in real urban areas. The seismic fragility was deduced through a total of 29822 time history analysis. In addition, sewer pipes were evaluated and the persisting period was passed by applying the research results of strength reduction which is due to sulphate erosion. As a result, the difference in failure probability between 300 and 800 with the smaller diameter of the representative pipes was approximately double and the size of the pipes has a significant effect on the seismic fragility function. Moreover, the failure probability of a seismic load increases by up to 10 fold as the strength reduction rate increases. The results of this study can be used as a means of predicting the damage and countermeasures of sewer pipes and might be reflected in the seismic design of underground facilities.

Analysis of Characteristics of Vertical Response Spectrum of Ground Motions from Domestic Earthquakes (국내 관측자료를 이용한 수직 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung;Hong, Seung-Min;Park, Ki-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • The vertical response spectra using the observed ground motions from the recent more than 30 macro earthquakes were analysed and then were compared both to the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and to the Korean Standard Design Response Spectrum for general structures and buildings (1997). 176 vertical ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum had strong dependency on epicentral distance. The results also showed that the vertical response spectra revealed much higher values for frequency bands above 5~7 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.2 second (5 Hz) than the Korean Standard Response Spectrum (SD soil condition). These frequency-dependent spectral values could be related to the characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of vertical seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

The Effect of Clozapine on Central Insulin Response in Rats (항정신병약물 클로자핀이 흰쥐 뇌실로 주입한 인슐린의 반응에 미치는 영향)

  • Kim, Se Hyun;Yu, Hyun Sook;Park, So Young;Kim, Min Kyung;Park, Hong Geun;Kim, Yong Sik
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.4
    • /
    • pp.187-192
    • /
    • 2012
  • Objectives Although antipsychotic drug clozapine has superior efficacy, this is hampered by metabolic side effects such as weight gain and diabetes. Recent studies demonstrate that clozapine induces insulin resistance. However, the identity and location of insulin resistance induced by clozapine has not been clarified. In this study, the effect of clozapine on central insulin response was investigated in rats. Methods Male Sprague-Dawley rats received intraperitoneal injection of clozapine or vehicle, which was followed by intracerebroventricular injection of insulin or its vehicle. The effects of clozapine on insulin-induced changes in blood glucose level and Akt phosphorylation in hypothalamus were investigated. Results Intraperitoneal injection of clozapine (20 mg/kg) increased blood glucose in rats. Intracerebroventricular injection of insulin reduced blood glucose in rats, which was blunted by pretreatment of clozapine. Accompanied with the antagonistic effect of clozapine to central insulin action in terms of blood glucose, clozapine inhibited the insulin-induced phosphorylation of Akt at Ser473 in rat hypothalamus. Conclusion Administration of clozapine inhibited the central insulin-induced changes in blood glucose and Akt phosphorylation in rat hypothalamus. These findings suggest that hypothalamus could be the site of action for the clozapine-induced insulin resistance.

Induction of ER-stress by Heat Shock in the Thyrocytes

  • Kwon, Ki-Sang;Kwon, O-Yu;Yang, Young-Mo
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.435-438
    • /
    • 2006
  • In eukaryotes, ER stress induces UPR (unfolded protein response) via IRE1 activation which sends a molecular signal for XBP1 mRNA splicing in the cytosol. During this mRNA splicing, 23 nt removed in which contains PstI site and then resulting XBP1 product is not digested with PstI restriction enzyme. In this study, using this XBP1 mRNA splicing mechanism, the effect of heat shock on thyrocytes is studied, because heat shock response in the thyrocytes needs more study to understand thyroid physiology under alternative environments. ER inducible drugs (tunicamycin, DTT, $Ca^{2+}$ ionopore A23187, BFA) induce ER stress in the thyrocytes. From 3 hours after heat shock, ER stress is induced and which is reversible when heat shock is without. While $Ca^{2+}$ ionopore A23187 is reversible from ER stress by washing out the drug, thapsigagin is irreversible. Other ER inducible drugs are not so sensitive to ER stress repairing. XBP1 mRNA splicing in a cell is very available method to detect ER stress. It needs only a small quantity of total RNA and processing also very easy.

  • PDF

An Optimal Procedure for Sizing and Siting of DGs and Smart Meters in Active Distribution Networks Considering Loss Reduction

  • Sattarpour, T.;Nazarpour, D.;Golshannavaz, S.;Siano, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.804-811
    • /
    • 2015
  • The presence of responsive loads in the promising active distribution networks (ADNs) would definitely affect the power system problems such as distributed generations (DGs) studies. Hence, an optimal procedure is proposed herein which takes into account the simultaneous placement of DGs and smart meters (SMs) in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Seeking to power loss minimization, the optimization procedure is tackled with genetic algorithm (GA) and tested thoroughly on 69-bus distribution test system. Different scenarios including variations in the number of DG units, adaptive power factor (APF) mode for DGs to support reactive power, and individual or simultaneous placing of DGs and SMs have been established and interrogated in depth. The obtained results certify the considerable effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the lowest value of power losses as well.

The Effect of Iridium-192 Implant in the Treatment of Head and Neck Cancer (두경부암에서 방사성이리디움 삽입치료의 효과)

  • Yoo Seong-Yul;Koh Kyoung-Hwan;Cho Chul-Koo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1988
  • Brachytherapy is known to be a good modality to achieve local control as a boost treatment following limited external irradiation, which may reduce the external beam related acute radiation sickness, particularly in head and neck cancer. The authors developed iridium-192 ribbons recently to replace the radium needles. Total of 13 head and neck cancer patients had been treated with Ir-192 ribbons during last one year from October 1986 to September 1987, and the results were analysed to assess the applicability of the fabricated sources. The conclusion is as follows; 1) Iridium implant achieved 54% (7/13) of complete response and 69% (9/13) of overall response rate in head and neck cancer. 2) Iridium is superior to radium and cecium in brachytherapy because of easier to use and lesser exposure to the personnel. 3) Afterloading technique is useful to modify dose distribution, to expand treatment site and method, and to develop interstitial hyperthermia.

  • PDF

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.