• Title/Summary/Keyword: site-directed mutation

Search Result 69, Processing Time 0.019 seconds

Asparagine Residue at Position 71 is Responsible for Alkali-Tolerance of the Xylanase from Bacillus Pumilus A-30

  • Liu, Xiang-Mei;Qi, Meng;Lin, Jian-Aiang;Wu, Zhi-Hong;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.534-538
    • /
    • 2001
  • The xynA gene encoding an alikali-tolerant endo-1,4-${\beta}$-xylanase (XYN) was cloned from the alkalophilic Bacillus pumilus A-30. The nucleotide sequence of a 974-bp DNA fragment containing the xynA was determined. An ORF of 684 nucleotides that encoded a protein of 228 amino aicds was detected. Asparagine-71 of XYN from B. Pumilus A-30 showed to be highly conservative in alkaline xylanases of family G/11, upon comparing the amino acid sequences of 17 family G/11 xylanases. Site-directed mutation of N71D of the xynA gene resulted in a decrease of 12.4% in the specific acitivity and a significant decline in the enzyme activity in the alkaline pH range.

  • PDF

Alteration of voltage-dependent activation by a single point mutation of a putative nucleotide-binding site in large-conductance $Ca^{2+}$-activated $K^+$ channel

  • Kim, Hyun-Ju;Lim, Hyun-Ho;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.44-44
    • /
    • 2003
  • $BK_{Ca}$ channels were suggested to contain one or more domains of the ‘regulator of K+ conductance’(RCK) in their cytosolic carboxyl termini (Jiang et al.2001). It was also shown that the RCK domain in mammalian $BK_{Ca}$ channels might sense the intracellular $Ca^{2+}$ with a low affinity (Xia et al. 2002). We aligned the amino acid sequence of the $\alpha$-subunit of rat $BK_{Ca}$ channels (rSlo) with known RCK domains and identified a second region exhibiting about 50% homology. This putative domain, RCK2, contains the characteristic amino acids conserved in other RCK domains. We wondered whether this second domain is involved in the domain-domain interaction and the gating response to intracellular $Ca^{2+}$ for rSlo channel, as revealed in the structure of RCK domain of E. coli channel (Jiang et al.2001). In order to examine the possibility, site-directed mutations were introduced into the RCK2 domain of rSlo channel and the mutant channels were expressed in Xenopus oocytes for functional studies. One of such mutation, G772D, in the putative nucleotide-binding domain resulted in the enhanced $Ca^{2+}$ sensitivity and the channel gating of rSlo channel. These results suggest that this region of $BK_{Ca}$ channels is important for the channel gating and may form an independent domain in the cytosolic region of $BK_{Ca}$ channels. In order to obtain the mechanistic insights of these results, G772 residue was randomly mutagenized by site-directed mutagenesis and total 17 different mutant channels were constructed. We are currently investigating these mutant channels by electrophysiological techniques.ical techniques.

  • PDF

Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • Kim, Seung-Beom;Kim, Ji-Hui;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.445-449
    • /
    • 2003
  • As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

  • PDF

Site-Directed Saturation Mutagenesis of Yeast Gcn4p at Codon 242

  • Lee, Jae-Yung;Bae, Yu-Byung;Kim, Jung-Ae;Song, Jae-Mahn;Choe, Mu-Hyeon;Kim, Ick-Young;Kim, Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.122-125
    • /
    • 1999
  • Gcn4p, a transcriptional activator protein of the yeast, Sacchromyces cerevisiae, binds to the specific sequence in the promoters of many amino acid biosynthetic genes for general control. The serine residue (Ser 242) of Gcn4p directly contacts the DNA. Here, for inspecting the DNA binding properties and the level of transcriptional activation of Gcn4p, we introduced a polymerase chain reaction (PCR) site-directed saturation mutation library into the Ser 242 site using 2 outside primers and 2 oligonucleotides with its codons fully degenerated. The sequencing analysis of 146 samples revealed the even nucleotide distribution within the experimental error showing 23, 26, 25, and 26% frequency of U, C, A, and G bases, respectively. This method turned out to be a simple, fast, and economical method for constructing a library of all 20 amino acids at specific codon.

  • PDF

SITE-DIRECTED MUTATION STUDY ON HYPERTHERMOSTABILITY OF RUBREDOXIN FROM PYROCOCCUS FURIOSUS USING MOLECULAR DYNAMICS SIMULATIONS IN WATER

  • Jung, Dong-Hyun;Kang, Nam-Sook;Jhon, Mu-Shik
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.21-21
    • /
    • 1996
  • The hyperthermostable protein, rubredoxin from Pyrococcus furiosus is 53-residue protein with a three-stranded anti-parallel $\beta$-sheet and several loops. To investigate the effect of changes of electrostatic and hydrophobic interactions on the structure and dynamic property of P. furiosus rubredoxin, molecular dynamics simulations in water were performed on three mesophilic rubredoxins, P, furiosus rubresoxin, and 5 mutants of P. furiosus rubredoxin. (omitted)

  • PDF

Dynamic Structure of Bacteriorhodopsin Revealed by $^{13}C$ Solid-state NMR

  • Saito, Hazime;Yamaguchi, Satoru;Tuzi, Satoru
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.110-113
    • /
    • 2002
  • We demonstrate here a dynamic structure of bacteriorhodopsin (bR) as revealed by $^{13}$ C NMR studies on [3_$^{13}$ C]_,[1-$^{13}$ C]Ala- and/or Val-labeled wild type and a variety of site-directed mutants at ambient temperature. For this purpose, well-resolved (up to twelve) I$^{13}$ C NMR peaks were assigned with reference to the displacement of peaks due to the conformation-dependent I$^{13}$ C chemical shifts and reduced peak-intensities due to site-directed mutations. Revealed bR structure was not rigid as anticipated from 2D crystals of hexagonal array but a dynamically heterogeneous, undergoing a variety of local fluctuations depending upon specific site with frequency range of 10$^2$ -10$^{8}$ Hz. In particular, dynamics- dependent suppression of peaks turned out to be very sensitive to the motion of 10$^{-4}$ s and 10$^{-5}$ s interfered with frequency of magic angle spinning and proton decoupling, respectively. It is also noteworthy that such dynamic feature is strongly dependent upon the manner of 2D crystalline packing: $^{13}$ C NMR peaks of monomeric bR yielded either highly broadened or completely suppressed signals, depending upon the type of $^{13}$ C-labeled amino-acid residues.

  • PDF

The Role of Residues 103, 104, and 278 in the Activity of SMG1 Lipase from Malassezia globosa: A Site-Directed Mutagenesis Study

  • Lan, Dongming;Wang, Qian;Popowicz, Grzegorz Maria;Yang, Bo;Tang, Qingyun;Wang, Yonghua
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1827-1834
    • /
    • 2015
  • The SMG1 lipase from Malassezia globosa is a newly found mono- and diacylglycerol (DAG) lipase that has a unique lid in the loop conformation that differs from the common alpha-helix lid. In the present study, we characterized the contribution of three residues, L103 and F104 in the lid and F278 in the rim of the binding site groove, on the function of SMG1 lipase. Site-directed mutagenesis was conducted at these sites, and each of the mutants was expressed in the yeast Pichia pastoris, purified, and characterized for their activity toward DAG and p-nitrophenol (pNP) ester. Compared with wild-type SMG1, F278A retained approximately 78% of its activity toward DAG, but only 11% activity toward pNP octanoate (pNP-C8). L103G increased its activity on pNP-C8 by approximately 2-fold, whereas F104G showed an approximate 40% decrease in pNP-C8 activity, and they both showed decreased activity on the DAG emulsion. The deletion of 103-104 retained approximately 30% of its activity toward the DAG emulsion, with an almost complete loss of pNP-C8 activity. The deletion of 103-104 showed a weaker penetration ability to a soybean phosphocholine monolayer than wild-type SMG1. Based on the modulation of the specificity and activity observed, a pNP-C8 binding model for the ester (pNP-C8, N102, and F278 form a flexible bridge) and a specific lipid-anchoring mechanism for DAG (L103 and F104 serve as "anchors" to the lipid interface) were proposed.

Effects of Site-Mutagenesis of an Amino Acid Triplet Repeat at $M_1$ and $M_2$ Muscarinic Receptors on Receptor Function ($M_1$$M_2$ 무스카린성 수용체에서 아미노산 Triplet Repeat의 Site-Mutagenesis가 수용체기능에 미치는 영향)

  • Lee, Seok-Yong;Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.311-321
    • /
    • 1996
  • Both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T) at C-terminus ends of the second putative transmembrane domains. This triplet is repeated as LYT-LYT in $M_2$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of $M_1$ receptors. In this work, we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential cellular function at the two receptor subtypes. Mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence did not result in a significant change in the binding affinity of the agonist carbachol. The reverse mutation at the $M_2$ receptor also did not modify agonist affinity. Surprisingly, the LYTLYT $M_1$ receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular $Ca^{2+}$. On the other hand, the reverse $LYTLYT{\rightarrow}LYTTYL$ mutation in the $M_2$ receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of phosphoinositide (PI) hydrolysis. Our data suggest that the LYTTYL/LYTLYT sequence differences between $M_1$ and $M_2$ muscarinic receptors are not important for specifying ligand binding and coupling of various subtypes of muscarinic receptors to different cellular signaling pathways although they might play a role in the modulation of muscarinic reseptor coupling to PI hydrolysis.

  • PDF

Mutations within the Putative Active Site of Heterodimeric Deoxyguanosine Kinase Block the Allosteric Activation of the Deoxyadenosine Kinase Subunit

  • Park, In-Shik;Ives, David H.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.244-247
    • /
    • 2002
  • Replacement of the Asp-84 residue of the deoxyguanosine kinase subunit of the tandem deoxyadenosine kinase/deoxyguanosine kinase (dAK/dGK) from Lactobacillus acidophilus R-26 by Ala, Asn, or Glu produced increased $K_m$ values for deoxyguanosine on dGK. However, it did not seem to affect the binding of Mg-ATP. The Asp-84 dGK replacements bad no apparent effect on the binding of deoxyadenosine by dAK. However, the mutant dGKs were no longer inhibited by dGTP, normally a potent distal end-product inhibitor of dGK. Moreover, the allosteric activation of dAK activity by dGTP or dGuo was lost in the modified heterodimeric dAK/dGK enzyme. Therefore, it seems very likely that Asp-84 participates in dGuo binding at the active site of the dGK subunit of dAK/dGK from Lactobacillus acidophilus R-26.